Методические особенности изучения темы "Подобные треугольники" в средней общеобразовательной школе
i>Характерные свойства гомотетии.

Гомотетия плоскости имеет одну неподвижную точку - центр гомотетии.

Гомотетия плоскости отображает прямую, проходящую через центр гомотетии, в себя.

Гомотетия плоскости () отображает прямую, в параллельную ей прямую, так не проходящую через центр гомотетии.

Гомотетия плоскости отображает окружность, центр которой совпадает с центром гомотетии, в концентрическую окружность. При этом радиусы окружностей связаны соотношением .

Всякие две неравные окружности гомотетичны друг другу, при этом, если окружности не являются концентрическими, существуют две гомотетии, отображающие одну из них в другую.

Гомотетия плоскости является преобразованием подобия первого рода.

Теорема. Всякое преобразование подобия с коэффициентом подобия k можно представить как композицию гомотетии и движения.

1.5 Группа преобразований подобия и её подгруппы

Теорема 1. Множество всех преобразований подобия плоскости есть группа преобразований, называемая группой подобий.

Доказательство.

Если и - преобразования подобия с коэффициентами и , то - преобразования подобия с коэффициентом . Действительно является преобразованием плоскости. Докажем, что для любых двух точек M и N и их образов , Выполняется равенство . Обозначим и , тогда , . По основному свойству преобразования подобия , . Поэтому и композиция является преобразованием подобия.

Пусть - преобразование подобия плоскости. Так как изменяет всё расстояние в отношение , то обратное к нему преобразование изменяет все расстояния в отношении .

Следовательно, - преобразование подобия с коэффициентом .

Оба условия и выполняются. Следовательно, множество всех преобразований подобия является подгруппой группы всех преобразований плоскости, а, значит, и группой.

Определение. Множество всех подобных между собой фигур называется формой.

Теорема 3. Подгруппами группы подобий плоскости являются:

Группа преобразований подобия первого рода;

Группа движений и все её подгруппы;

Группа гомотетий и параллельных переносов;

Группа гомотетий с одним и тем же центром.

1.6 Метод подобия

Метод подобия оказывается удобным при доказательстве теорем или при решении задач. Этим методом решаются задачи, в которых заданы углы, отношения отрезков и лишь только одно данное условие связано с линейными размерами искомой фигуры. Фигуры, удовлетворяющей всем условиям задачи, кроме того, которое связано с размерами искомой фигуры, подобны между собой. Построив одну из них, а затем, подобрав соответствующим образом, коэффициент подобия, построим искомую фигуру.

Теорема. Медианы треугольника пересекаются в одной точке, каждая медиана делиться этой точкой в отношении 2:1 (считая от вершины треугольника).

Задача. Построить треугольник АВС, если даны: , отношение сторон АВ:ВС =m:n (m, n-данные отрезки) и медиана к стороне АС.[21]

Глава 2. Методика изучения темы «Подобные треугольники» в школьном курсе геометрии

§1.Сравнительный анализ темы «Подобные треугольники» в различных учебниках по геометрии

В данной главе предлагается сравнительный анализ темы по следующим учебникам:

Атанасян Л.С. Геометрия 7-9;

Погорелов А.В. Геометрия 7-11;

Александров А.Д. Геометрия 7-9;

Бевз Г.П. Геометрия 7-11;

Шарыгин И.Ф. Геометрия 7-9.

Рассматриваемые учебные пособия, такие как Атанасяна Л.С. Погорелова А.В. чаще всего используются в школе, учебник Александрова А.Д. интересен тем, что используется в классах с углубленным изучением математики, учебник Шарыгина И.Ф. -это новый учебник, который ставиться в противовес учебнику Бевза Г.П. немного устаревшему и практически не применяющемуся на практике.

Материал структурируется по следующему плану, в который включаются основные вопросы анализа:

Понятие преобразование подобия и его свойства;

Гомотетия и её свойства;

Определение подобных фигур, свойства подобных фигур;

Определение подобных треугольников;

Признаки подобия треугольников;

Метод подобия;

Система задач по данной теме;

Понятие преобразование подобия и его свойства.

В рассмотренных учебниках понятие преобразование подобия и его свойства чаще всего не изучается, только в учебниках Атанасяна Л.С., тема, изучается индуктивно и рассмотрению подобных треугольников не предшествует. Данные понятия прилагаются в рамках других тем изучаемых позже.

Например, в учебнике Александрова А.Д. предлагаются следующие определения преобразования подобия: «Подобием называется преобразование, при котором расстояния изменяются в одном и том же отношении, т.е. умножается на одно и тоже число, называемое коэффициентом подобия», «Подобием фигуры с коэффициентом k>0 называется такое её преобразование, при котором любым двум точкам X и Y фигуры сопоставляются такие точки X?ґ? и Yґ, что XґYґ=k*XY». Рассмотренные определения вместе составляют аналогичное определение в учебнике Погорелова «Преобразование фигуры F в фигуру Fґ, называется преобразованием подобия, если при этом преобразовании расстояние между точками изменяется в одно и тоже число раз. Произвольные точки X и Y фигуры F при отображении подобия переходят в точки Xґ ,Yґ фигуры Fґ, то XґYґ=k*XY, причём число k одно и тоже для всех точек X и Y, число k называется коэффициентом подобия».

В учебных пособиях рассмотренных выше определения преобразования подобия не выделяются и не привлекают внимание учащихся.

Совершенно иначе вводится определение преобразования подобия в учебном пособии Бевза Г.П., «Геометрическое преобразование, отображающее фигуру на подобную ей фигуру», автор опирается на определение подобных фигур. Совершенно разные свойства преобразования подобия выделяет каждый автор, только два свойства общее для всех «Подобие сохраняет величину угла и отрезок переводит в отрезок».

В учебнике Александрова А.Д. дополнительно приводятся:

10 Подобие переводит треугольник в треугольник. Соответственные стороны этих треугольников пропорциональны, а соответственные углы равны

20 В результате подобия с коэффициентом k площадь многоугольной фигуры умножается на k2

В учебном пособии Погорелова свойства рассмотрены в виде утверждения: «Преобразование подобия сохраняет простое отношение трёх точек; переводит прямые в прямые; полупрямые в полупрямые».

Гомотетия и её свойства.

При введении понятия гомотетии и её свойства так же существуют различия.

Гомотетия в учебнике Александрова А.Д. определяется с использованием вектора: «гомотетия с центром О и коэффициентом k (отличным от нуля) - это преобразование, при котором каждой точке X сопоставляется такая точка Xґ, что =k».

Понятие гомотетии вводиться конструктивно в учебнике Погорелова: «Пусть F-данная фигура и O-фиксированная точка. Проведём через произвольную точку X фигуры F луч OX и отложим на нём отрезок OXґ, равный , где k - положительное число. Преобразование фигуры F, при котором каждая её точка X переходит в Xґ, построенную указанным способом, называется гомотетией относительно центра О. Число k называется коэффициентом гомотетии, фигуры F и Fґ называются гомотетичными».

Аналогично вводиться гомотетия в учебнике Бевза Г.П.

Такие общие свойства гомотетии как:

10 Гомотетия сохраняет величину угла.

20 Гомотетия отрезок переводит в отрезок

рассматриваются в учебных пособиях Александрова А.Д., Бевза Г.П., Атанасяна Л.С., но есть и дополнительные, например автор Александров А.Д., дополняет рассмотренные выше свойства следующими:

30 Основное свойство гомотетии: при гомотетии с коэффициентом k каждый вектор умножается на k.

40 Гомотетия треугольник переводит в треугольник, стороны этих треугольников пропорциональны, а соответственные углы равны.

Автор Бевз Г.П. дополняет следующие свойства, которые явно не выделяются в учебнике:

30 При гомотетии прямая переходит в прямую, луч в луч.

40 Гомотетия изменяет размер фигуры, не изменяет её формы.

В учебнике Погорелова А.В. свойства гомотетии не рассматриваются, только есть небольшое замечание о том, что гомотетия и подобие обладают аналогичными свойствами.

Определение подобных фигур, свойства подобных фигур.

Определение подобных фигур в учебнике Погорелова А.В. не выделено курсивом и сливается с текстом, таким образом, не привлекает внимания учащихся. «Две фигуры называются подобными, если они переводятся друг в друга преобразованием подобия». Далее вводиться обозначение подобных фигур.

Практически аналогично, очень наглядно и подробно вводиться определение подобных фигур в учебном пособии Александрова А.Д. «Фигура Fґ называется подобной фигуре F с коэффициентом k, если существует подобие с коэффициентом k, переводящее F в Fґ». Далее делается вывод, что подобные фигуры имеют одинаковую форму, но различные размеры, что очень важно для учащихся при понимании темы.

С помощью композиции гомотетии и движения вводиться определение подобия фигур в учебнике Бевза Г.П.. «Две фигуры называются подобными, если с помощью композиции гомотетии и движения одну из них можно отобразить на другую».

Следует заметить, что в учебном пособии Атанасяна Л.С. подобные фигуры изучаются после темы подобные треугольники. По нашей теме есть небольшое упоминание о том, что «в геометрии фигуры одинаковой формы называются подобными» и приводиться пару примеров.

Аналогично вводиться определение подобных фигур в учебнике Шарыгина И.Ф.. Автор делает ссылки на начало главы «Подобие» где приводиться много примеров подобных фигур.

Только в учебнике Погорелова А.В. встречаются свойства подобных фигур:

«Если фигура F1 подобна фигуре F2 , а фигура F2 подобна фигуре F3 , то фигуры F1 и F3 подобны».

Во всех рассмотренных учебниках определение подобных фигур предшествует изучению подобных треугольников.

Определение подобных треугольников.

Что касается подобия треугольников, то в учебнике Атанасяна Л.С. они определяются с опорой на понятие сходственных сторон треугольников и равенство углов: «Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника соответственно равны сторонам другого».

В учебнике Шарыгина И.Ф. отличие состоит в том, что здесь используются понятие соответствующих, а не сходственных сторон, а так же вводятся коэффициент подобия треугольников: «Два треугольника называются подобными, если у них равны углы, а соответствующие стороны пропорциональны».

Признаки подобия треугольников.

Признаки подобия треугольников рассматриваются во всех учебных пособиях и формулируются следующим образом:

Первый признак: «Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны».

Второй признак: «Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то такие треугольники подобны».

Третий признак: «Если три стороны одного треугольника пропорциональны трём сторонам другого, то такие треугольники подобны».

Каждый автор доказывает признаки по определённому плану. Например, в учебнике Погорелова А.В. можно выделить следующие этапы:

Треугольник A1B1C преобразуется с помощью подобия с коэффициентом k, например гомотетии () и получаем треугольник A2B2C2.

Доказываем равенство треугольников ABC и ABC2.

Доказываем подобие треугольников A1B1C1 и ABC

После каждого признака автор предлагает решение задачи на использование изученного признака.

Атанасян Л.С. доказывает признаки подобия иначе:

Рассматривается треугольник ABC2

Доказываем равенство треугольников ABC и ABC2

Доказываем, что треугольник ABC2 подобен треугольнику A1B1C1 (по определению).

В учебнике Александрова А.Д. признаки доказываются различно, первый признак доказывается аналогично плану учебника Погорелова А.В.. Для доказательства второго признака используется теорема синусов. При доказательстве третьего признака используется обобщённая теорема Пифагора.

Следующий план доказательства можно проследить в учебном пособии Бевза Г.П.:

Гомотетия с коэффициентом k переводит треугольник A1B1C1 в треугольник A2B2C2, равный треугольнику ABC

Доказываем, что треугольники ABC A2B2C2 равны

Доказываем, что треугольник A2B2C2 гомотетичен треугольнику A1B1C1.

Автор Шарыгин И.Ф. в своём учебном пособии перед введением признаков подобия рассматривает теорему о подобных треугольниках: «Параллельные прямые, пересекающие стороны угла, образуют с его сторонами подобные между собой треугольники».

После доказательства теоремы рассматриваются признаки подобия. Каждый признак доказывается, с использованием признаков равенства треугольников. Только в учебнике данного автора вводятся признаки подобия прямоугольных треугольников.

Метод подобия.

Метод подобия в школе чаще всего явно не выделяется, некоторые авторы учебников очень подробно останавливаются на этом методе.

В учебнике Александрова рассматривается применение подобия для решения задач и «доказательства теорем». В частности решаются задачи на построение четвёртого пропорционального отрезка, квадрата, расположенного в прямоугольном треугольнике, так, что три его вершины лежат на катетах, а четвёртая на гипотенузе; доказывается теорема о точке пересечения медиан треугольника.

В учебнике Атанасяна Л.С. рассматривается теорема о средней линии треугольника; точка пересечения медиан треугольника; о пропорциональности отрезков в прямоугольном треугольнике; практическое приложение подобия треугольников (задачи на построение, измерительные работы на местности).

Система задач по данной теме.

По теме «Подобные треугольники» в учебниках Бевза Г.П., Атанасяна Л.С., Погорелова А.В., Шарыгина И.Ф., Александрова А.Д. рассматривается большое количество задач на построение, на доказательство, на вычисление отношений и на решение. Задачи в процессе обучения выполняют дидактические, познавательные, развивающие и воспитательные функции. Относительно перечисленных функций будет проводиться сравнительный анализ систем упражнений.

В каждом учебнике есть особенности, которые отличают их друг от друга. Например, в учебнике Бевза Г.П. большое внимание уделяется заданиям на построение фигур, гомотетичных данным фигурам. Только в этом учебнике предлагаются практические задания такие, как: «Вырежьте из бумаги две подобные фигуры в форме буквы «Г» и разместите их на столе так, чтобы они оказались гомотетичными относительно некоторого центра. Сколькими способами можно это сделать? Изменяются ли при этом коэффициенты гомотетии? Разместите эти фигуры так, чтобы они были гомотетичными».

Большинство задач дидактического характера рассматриваются в учебном пособии Шарыгина И.Ф., есть несколько задач несущие развивающую функцию, «Какие треугольники можно разрезать на два подобных между собой треугольника» и так же задачи познавательного характера: «Докажите, что диагонали трапеции вместе с основаниями образуют два подобных треугольника». Мало задач по готовым чертежам. Упражнения расположены в разноброс не соответствуя последовательности изложения теоретического материала, что благотворно влияет на умственную деятельность учащихся.

В учебнике Атанасяна Л.С. предлагаются задачи с решениями. Большое внимание уделяется задачам несущие дидактическую функцию. Очень интересные познавательные задачи: «Докажите, что отношение сходственных сторон подобных треугольников равно отношению высот, проведённых к этим сторонам». Хорошо подобраны развивающие задачи: «План земельного участка имеет форму треугольника. Площадь изображённого на плане треугольника равна 87,5см2. Найдите площадь земельного участка, если план выполнен в масштабе 1:100000». В учебнике данного автора перед группой задач указан номер теоретического пункта, что даёт подсказку учащимся.

Задачи в учебнике Погорелова А.В. предлагаются от более простой к сложной. Много задач по готовым чертежам. Большинство упражнений познавательного характера способствующие получению новых фактов, которые используются при решении других задач, например: «Докажите подобие равнобедренных треугольников с равными углами при вершинах противолежащих основаниям». Задач развивающей функции практически нет. Аналогично учебнику Атанасяна Л.С. задачи располагаются относительно пунктам изученного теоретического материала.

Система задач учебника Александрова А.Д. включает в себя в основном задачи несущие дидактическую функцию, а так же задачи познавательные: «На одной стороне угла отложили равные отрезки, через их концы провели параллельные прямые, пересекающие стороны угла. Докажите, что на другой стороне угла получаются равные отрезки». При доказательстве этого утверждения учащие знакомятся с теоремой Фалеса. Большое разнообразие задач с использованием готового рисунка. Автор предлагает интересные развивающие задачи: «На каком удалении от вас находиться человек, идущий перпендикулярно линии наблюдения? В одной из книг даётся такой ответ: «Закройте левый глаз, вытяните руку вперёд и отогните большой палец. Уловив момент, когда палец прикроет фигуру идущего вдали человека, закройте правый глаз, а левый откройте и сосчитайте, сколько шагов сделает человек до того момента, когда палец вновь прикроет фигуру. Увеличив полученное число в 10 раз, вы узнаете расстояние от него в шагах» На чём основан такой приём?

Во всех рассмотренных учебниках тема «Подобные треугольники» вводиться различно, какой-то материал лучше, какой-то хуже, нет идеальных учебных пособий. Наиболее доступный, понятный, содержащий большое количество рисунков и упражнений различного характера является учебник Атанасяна Л.С.. Дальнейшая работа основывается на его материале.

§2. Логико-дидактический анализ темы «Подобные треугольники » по учебнику Атанасяна Л.С.

Тема подобные треугольники в учебнике Атанасяна Л.С. вводиться в 8 классе и включает в себя четыре параграфа, каждый из которых делиться на пункты.

§1. Определение подобных треугольников.

§2. Признаки подобия треугольников.

§3. Применение подобия к доказательству теорем и решению задач.

§4. соотношения между сторонами и углами прямоугольного треугольника.

В первом параграфе вводятся такие новые понятия как «пропорциональные отрезки», «сходственные стороны», «подобные треугольники», «коэффициент подобия».

Понятие пропорциональных отрезков вводиться описательно с использованием ранее изученного факта (об отношении двух отрезков), и рассматривается конкретный пример на применение нового определения. Далее оговаривается, что понятие пропорциональности может вводиться и для большого числа отрезков.

Прежде чем ввести определение подобных треугольников предлагается разобраться с подобием в реальной и повседневной жизни, и с подобием фигур в геометрии вообще. После этого используя рисунок двух треугольников и равенство углов описательно вводиться определение сходственных сторон. После словесной формулировки предлагается другая запись с использованием буквенной символики, таким образом, подобие треугольников даётся не на основе преобразования подобия, а через равенство углов и пропорциональности сходственных сторон. Пусть треугольники АВС и А1В1С1 подобны тогда (1); (2) из последнего отношения вытекает понятие коэффициента подобия.

Рассмотрев все основные понятия анализируемого параграфа, переходят к изучению следующей теоремы: «Отношение площадей подобных треугольников равно квадрату коэффициента подобия», доказательство основано на применение теоремы об отношении площадей треугольника, имеющих по равному углу и определение подобных треугольников.

Во втором параграфе рассматриваются только признаки подобия треугольников с доказательством и отсутствуют новые понятия.

Оказывается, что подобие треугольников можно установить, проверив только некоторые из равенств определения подобных треугольников (1) или (2). Для доказательства этого факта рассматриваются три признака подобия треугольников. Первый признак доказывается, опираясь на теорему о сумме углов треугольника и на ранее изученную теорему об отношении площадей треугольников имеющих по одному равному углу. Второй и третий признак доказывается по общей схеме:

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать