Методы решения задач на построение
p align="left">Рассмотрим еще один пример анализа. Требуется вписать окружность в данный треугольник. Пусть АВС - данный треугольник (рис. 7). Чтобы вписать в него окружность, надо определить положение ее центра и найти величину радиуса.

Представим себе, что точка О - центр вписанной окружности, а ОМ - радиус проведенный в какую-либо из точек касания окружности к сторонам треугольника (например, в точку касания окружности к стороне АВ). Тогда отрезок ОМ перпендикулярен к прямой АВ. Поэтому ОМ - расстояние центра вписанной окружности от стороны треугольника АВ. Так как все радиусы окружности равны, то центр окружности одинаково удален от всех сторон треугольника и, следовательно, прямые ОА, ОВ и ОС служат биссектрисами (внутренних) углов треугольника АВС. Этих соображений, очевидно, достаточно для построения центра и определения радиуса искомой окружности.

2. Построение. Данный этап решения состоит в том, чтобы указать последовательность основных построений (или раннее решенных задач), которые достаточно произвести, чтобы искомая фигура была построена.

Построение обычно сопровождается графическим оформлением каждого его шага с помощью инструментов, принятых для построения.

В качестве примера обратимся опять к задаче о построении окружности, вписанной в данный треугольник АВС. Как показывает проведенный выше анализ этой задачи, для построения искомой окружности нужно последовательно построить (см. рис. 7):

биссектрисы каких-либо двух внутренних углов данного треугольника;

точку их пересечения О;

прямую, проходящую через точку О, перпендикулярно прямой АВ;

основание М проведенного перпендикуляра;

окружность (О, ОМ).

3. Доказательство. Доказательство имеет целью установить, что построенная фигура действительно удовлетворяет всем поставленным в задаче условиям.

Так, чтобы провести доказательство правильности приведенного выше построения окружности, вписанной в данный треугольник, надо установить, что построенная нами окружность (О, ОМ) действительно коснётся всех сторон треугольника АВС. Для этого, прежде всего заметим, что прямая АВ касается проведённой окружности, так как эта прямая перпендикулярна к радиусу ОМ.

Вместе с этим ясно, что радиус окружности равен расстоянию её центра от стороны АВ данного треугольника АВС. Далее замечаем, что центр окружности О одинаково удалён от всех сторон треугольника, так как лежит на пересечении биссектрис углов треугольника. Следовательно, расстояние центра окружности от стороны АС или от стороны ВС также равно радиусу построенной окружности, так что если провести через О перпендикуляры к сторонам треугольника АС и ВС, то основания этих перпендикуляров (точки N и Р на рис. 8) расположатся на той же окружности.

Таким образом, каждая из прямых АС и ВС перпендикулярна к соответствующему радиусу в конце его, лежащем на окружности, и поэтому каждая из этих прямых касается построенной окружности.

Доказательство обычно проводится в предположении, что каждый шаг построения действительно может быть выполнен.

4. Исследование. При построении обычно ограничиваются отысканием одного какого-либо решения, причем предполагается, что все шаги построения действительно выполнимы. Для полного решения задачи нужно ещё выяснить следующие вопросы:

всегда ли (т.е. при любом ли выборе данных) можно выполнить построение избранным способом;

можно ли и как построить искомую фигуру, если избранный способ нельзя применить;

сколько решений имеет задача при каждом возможном выборе данных.

Рассмотрение всех этих вопросов и составляет исследование. Таким образом, исследование имеет целью установить условия разрешимости и определить число решений.

Иногда ставится также задача: выяснить при каких условиях искомая фигура будет удовлетворять тем или иным дополнительным требованиям. Например, может быть поставлен вопрос: при каких условиях искомый треугольник будет прямоугольным или равнобедренным? Или такой вопрос: при каких условиях искомый четырёхугольник окажется параллелограммом или ромбом?

Нередко школьники проводят исследование, в известной мере произвольно выбирая те или иные случаи, причём неясно, почему рассматриваются именно такие, а не какие-либо иные случаи. Остаётся неясным также, все ли возможные случаи рассмотрены. При исследовании решения какой-либо сложной задачи такой подход может привести к потере решений, к тому, что некоторые случаи не будут рассмотрены.

Чтобы достигнуть необходимой планомерности и полноты исследования, рекомендуется проводить исследование «по ходу построения». Сущность этого приёма состоит в том, чтобы перебрать последовательно все шаги, из которых слагается построение, и относительно каждого шага установить, всегда ли указанное на этом шаге построение выполнимо, а если выполнимо, то сколькими способами.

Для этого необходимо:

Выяснить, всегда ли существуют в действительности точки, прямые, окружности или другие фигуры, построение которых предполагается осуществить на каждом шаге намеченного построения, или же их существование зависит от специального выбора положения или размеров тех или иных фигур. Например, если предполагается построить точки пересечения окружности с прямой, то надо заметить, что существование таких точек зависит от соотношения между радиусом этой окружности и расстоянием центра окружности от прямой.

Дальнейшее исследование надо проводить только для тех случаев, когда построение возможно, т.е. когда каждый шаг действительно приводит к построению искомых фигур.

Для каждого случая, когда решение существует, определить, сколько именно точек, прямых, окружностей и т.д. даёт каждый шаг построения. Например, если строятся точки пересечения окружности и прямой, то надо учесть, что таких точек будет две, если радиус окружности больше расстояния от центра до прямой, и одна, если радиус окружности равен расстоянию центра от прямой.

Учитывая результаты исследования каждого шага, обратиться к задаче в целом и установить, при каких условиях расположения денных фигур или при каких соотношениях их размеров задача действительно имеет решение, а при каких его не существует. Если возможно, выразить условия разрешимости формулой (в форме неравенств или равенств).

Определить число возможных решений при каждом определённом предположении относительно данных, при котором эти решения существуют.

В итоге таких рассуждений решается вопрос о возможности построения данным способом. Но остаётся ещё открытым вопрос: не возникнут ли новые решения, если изменить как-либо способ построения? Иногда удастся доказать, что всякое решение данной задачи совпадает с одним из уже полученных решений; в этом случае исследование можно считать законченным. Если же это не удаётся, то можно предположить, что задача имеет другие решения, которые могут быть найдены другими способами. В этих случаях полезно ещё раз обратиться к анализу и проверить, нет ли каких-либо иных возможных случаев расположения данных или искомых фигур, которые не были предусмотрены ранее проведённым анализом.

2. Основные методы решения задач на построение

2.1 Метод параллельного переноса

Часто построение фигуры становится затруднительным только от того, что части этой фигуры слишком удалены друг от друга, и поэтому трудно ввести в чертёж данные. В этих случаях какую-либо часть искомой фигуры переносят или параллельно самой себе, или другим образом, но на такое расстояние, чтобы вновь полученная фигура могла быть построена или непосредственно, или легче, чем искомая фигура. Направление такого переноса зависит от условия задачи и должно быть выбрано так, чтобы во вновь полученную фигуру вошло, по возможности, большее количество данных.

Пример 1. Постройте трапецию по заданным сторонам.

Решение. Анализ. Пусть трапеция АВСD построена, ВС= а, АD= b, AB= c, CD= d (рис. 8). Выполним параллельный перенос, определяемый вектором СВ. Тогда сторона СD перейдёт в BD. Треугольник АВD можно построить по трём сторонам c, d, b-a (b>a).

Затем продолжим отрезок АD на DD = a. Через точку В проведем прямую, параллельную АD и на ней отложим отрезок ВС= а. Соединим точки С и D. Полученная трапеция АВСD - искомая.

План построения очевиден.

Доказательство. В четырехугольнике АВСD BC параллельна AD, значит ABCD - трапеция в которой AB = c, AD =b, так как AD= b - a + a. BD= CD = d.

Исследование. Треугольник ABD можно построить по трём сторонам, если c - d < b - a < c + d. При этом условии однозначно выполнимы и все остальные шаги построения. Если неравенство c - d < b - a < c + d не выполняется, то задача при выбранных данных не имеет решения.

Пример 2. Построить четырёхугольник, зная его углы и противоположные

стороны.

Анализ. Положим, что в четырёхугольнике АВСD стороны BC и AD и углы А, В, С имеют данные значения. Перенесём BC параллельно самой себе в AE, тогда составится треугольник AED, в котором известны две стороны AE и AD и угол EAD, равный разности двух известных углов, данного угла BAD и угла FBC, смежного с данным CBA. Такой треугольник легко построить. Затем легко провести прямые EC и CD, потому что первая образует известный угол с прямой EA (угол CEG равен углу FBC); а вторая образует известный угол CDA со стороною AD. После этого остаётся только провести CB параллельно EA и решение очевидно.

Построение.

1. Строим треугольник АЕD;

2. ЕС;

3. СD;

4. СВ¦ЕА.

Исследование.

Эта задача имеет только одно решение: углы и отношение двух противоположных сторон четырёхугольника вполне определяют его вид.

2.2 Метод подобия

Основная идея метода подобия состоит в следующем:

Сначала строят фигуру, подобную искомой так, чтобы она удовлетворяла всем условиям задачи, кроме одного. Затем строят уже искомую фигуру, подобную искомой и удовлетворяющую опущенному требованию.

Метод подобия находит применение обычно в случаях, когда среди данных лишь одно является отрезком, а все остальные данные-либо углы, либо отношения отрезков.

Обычно целесообразно вспомогательную фигуру строить так, чтобы она была подобна не только искомой, но и подобно расположена с ней. Успех решения зависит в этих случаях от выбора центра подобия.

При решении задач на построение методом подобия часто воспользоваться следующим замечанием. Если две фигуры подобны, то коэффициент подобия равен отношению любых двух соответствующих отрезков. Если отрезкам a, b, c,… фигуры Ф соответствуют отрезки a1, b1, c1,… подобной фигуры Ф1, то коэффициент подобия равен также отношениям:

Пример 1. Дан АВС и внутри его точка М. Найти на стороне ВС точку Х, расположенную на одинаковом расстоянии от прямой АВ и от точки М.

Анализ. Пусть точка Х найдена так, что перпендикуляр ХY = МХ. Задача сводится к построению фигуры YХМ. Представим целый ряд фигур, подобных искомой фигуре. Достаточно построить одну из этих фигур, например РКN, так как останется провести из точки М прямую параллельную КР и задача будет решена.

Для построения фигуры РКN замечаем, что В есть центр подобия искомых фигур, и поэтому точки М, H, К и В лежат на одной прямой ВМ и PN АВ, PN = BN, положение же точки Р произвольно. Поэтому для построения фигуры PKN надо в произвольной точке Р восстановить PN АВ, из центра N описать радиусом PN дугу, которая пересечёт ВМ в точке К. Проводя МХ ¦КN, можно определить искомую точку Х.

Построение.

1. ЕG AB;

2. H = ? (G, EG)BM;

3. MX ¦ HG;

4. X = BCMX.

Доказательство. Опустив перпендикуляр ХY, из подобия треугольников находим МХ: GH = BX: BN = XY: GE, откуда МХ: GH = =XY: GE, но так как по построению HG = GE, то МХ = YX.

Исследование. Задача всегда возможна и имеет два решения, так как дуга из центра G встречает ВМ всегда в двух точках.

Пример 2. Построить треугольник АВС, если известно отношение АВ: ВС, АВС и радиус вписанной окружности.

Анализ. Так как в искомом треугольнике известен угол и отношение сторон этого угла, то, оставив остальные условия, построим треугольник, подобный искомому. Для этого на сторонах данного угла отложим BD, равную m каких-нибудь равных частей, и ВЕ, равную n таких же частей, и соединим точки D и E. Тогда искомый треугольник и треугольник DBE подобны, так как они имеют по равному углу, заключённому между пропорциональными сторонами. Проводя в угле АВС отрезки, параллельные DE, будем получать треугольники, подобные искомому, но с различными радиусами вписанных окружностей; из всех этих треугольников надо выбрать один, у которого радиус вписанной окружности равен r. Определив центр О, легко построить сам треугольник.

Построение.

1. OF DE;

2. OG = r;

3. Через G проводим AC ¦ DE;

4. ?АВС - искомый.

Доказательство. Следует из построения.

Исследование. Возможное решение всегда одно.

2.3 Метод геометрического места точек

Геометрическим местом точек называется совокупность точек, обладающих свойствами, исключительно им принадлежащими. Если задача приводится к определению точки, то можно отбросить одно из условий, которому эта точка должна удовлетворять; тогда искомая точка станет способна принять бесчисленное количество последовательных положений, и все эти положения составят геометрическое место точек, обладающих всеми требуемыми свойствами, кроме отброшенного. Фигура этого геометрического места чаще бывает нам заранее известна; в противном случае её надо определить вспомогательными построениями. Затем, приняв отброшенное условие и откинув какое-либо другое условие задачи, мы вновь увидим, что искомая точка станет способна принять бесчисленное множество новых положений, образующих новое геометрическое место. Определим фигуру этого нового геометрического места, если она нам неизвестна. Тогда искомая точка должна лежать и на первом и на втором геометрическом месте, а потому определяется их пересечением.

Иногда для определения точки достаточно построить одно геометрическое место, потому что другое дано в условии задачи. Если же искомая точка подчинена таким условиям, которые все в совокупности определяют только одно геометрическое место, то задача становится неопределённой.

Отсюда видно, как важно знать различные геометрические места. Знание геометрических мест иногда позволяет сразу видеть, где находится неизвестная точка.

Рассмотрим примеры.

Пример 1. Постройте треугольник, если заданы сторона, прилежащий к ней угол и сумма двух других сторон.

Анализ. Пусть ?АВС уже построен, тогда положение вершин В иС можно считать известным. Остаётся найти вершину А. Выясним свойства точки А. Во-первых, точка А принадлежит лучу (BA), так как дан угол АВС, во-вторых, точка А является вершиной ломанной, состоящей из двух звеньев, сумма которых равна длине данного отрезка, являющегося суммой АВ и АС сторон искомого треугольника.

На продолжении стороны ВА за точку А отложим отрезок АА1, равный отрезку АС. Теперь можно построить треугольник А1ВС по двум сторонам и углу между ними. В равнобедренном (по построению) треугольнике А1АС серединный перпендикуляр к стороне А1С пересечёт луч ВА1 в точке А.

Построение.

1) построить ?ВА1С по сторонам ВС и ВА1 = АВ + АС и углу между ними;

2) провести серединный перпендикуляр к стороне А1С;

3) найти точку пересечения луча (BA) и построенного серединного перпендикуляра. Точка пересечения и будет искомой вершиной А.

Доказательство. В построенном ?АВС сторона ВС, сумма сторон АВ и АС, угол В-данные.

Исследование проведём по ходу построения. Треугольник ВА1С по двум сторонам и углу между ними можно построить единственным образом. Провести серединный перпендикуляр к отрезку А1С - тоже единственным образом. Точка пересечения луча (BA) и серединного перпендикуляра существует и она единственная.
Пример 2. Постройте треугольник по стороне, разности углов при при этой стороне и сумме двух других сторон.

Анализ. Пусть ?АВС построен, тогда положение вершин В и С можно считать известным. Остаётся найти вершину А. Во-первых, точка А принадлежит лучу (BA), так как известна разность углов В и С. Во-вторых, точка А является вершиной ломаной, состоящей из двух звеньев, сумма которых равна длине данного отрезка, являющегося суммой АВ и АС сторон искомого треугольника.

Отложим данный угол от луча ВС внутрь треугольника АВС и обозначим его через х (угол DBC обозначен через х). Тогда угол С равен Углу АВD, обозначим его через у. На продолжении стороны СА за точку А отложим отрезок АА1, равный отрезку АВ и построим треугольник СВА1. Найдём углы:

угол А1АВ равен х + 2у,

угол АВА1 = , тогда

угол А1ВС равен .

Построение.

1) построить ?А1ВС по углу А1ВС, сторонам ВС и СА1;

2) построить серединный перпендикуляр к отрезку А1В;

3) найти точку пересечения А построенного серединного перпендикуляра со стороной А1С.

Точка пересечения и является искомой вершиной А.

Доказательство очевидно.

2.4 Алгебраический метод

Сущность метода заключается в следующем. Решение задач на построение сводится к построению некоторого отрезка (или нескольких отрезков). Величину искомого отрезка выражают через величины известных отрезков с помощью формулы. Затем строят искомый отрезок по полученной формуле.

Пример 1. Провести окружность через две точки А и В так, чтобы длина касательной к ней, проведённой из точки С равнялась а.

Анализ. Пусть через точки А иВ проведена окружность так, что касательная к ней из точки С равняется а. Так как через три точки можно провести окружность, то проведём СВ и определим положение точки К. Полагаем СК = х и СВ = с; тогда по свойству касательной сх = а2.

Построение.

1) для построения х чертим полуокружность на ВС и дугу (С, а);

2) опустим LK BC;

3) с КС = а2; поэтому х = КС, и точка К будет искомая;

4) восстановив перпендикуляры из середин АВ и КВ до их пересечения найдём искомый центр О;

5) чертим окружность (О, ОА);

МС - искомая касательная.

Доказательство. МС2 = СВКС = и МС = а, как и требовалось.

Исследование. Выражение a с - условие существования решения нашей задачи, так как только при этом условии дуга (С, а) пересечёт окружность СLB.

Пример 2. Из вершин данного треугольника как из центров опишите три окружности, касающиеся попарно внешним образом.

Анализ. Пусть АВС - данный треугольник, а, b, c - его стороны, х, у, z - радиусы искомых окружностей. Тогда Поэтому откуда

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать