Прикладные аспекты темы "Скорость химической реакции и катализ" на уроках химии в средней школе
table>

Концентрация

Температура кристаллизации, С

Башенная кислота

75%

-29 C

Контактная кислота

92,5%

-22 C

Олеум

20% своб.SO3

+2 C

Серная кислота и вода образуют азеотропную смесь состава 98,3% H2SO4 и 1,7% H2O с максимальной температурой кипения (336,5С). Состав находящихся в равновесии жидкой и паровой фаз для кислоты азеотропной концентрации одинаков; у более разбавленных растворов кислоты в паровой фазе преобладают пары воды, в паровой фазе над олеумом высока равновесная концентрация SO3.

Серная кислота весьма активна. Она растворяет оксиды металлов и большинство чистых металлов, вытесняет при повышенной температуре все другие кислоты из солей. Особенно жадно серная кислота соединяется с водой благодаря способности давать гидраты. Она отнимает воду у других кислот, от кристаллогидратов солей и даже кислородных производных углеводородов, которые содержат не воду как таковую, а водород и кислород в сочетании Н : О = 2. Дерево и другие растительные и животные ткани, содержащие целлюлозу (С6Н10О5), крахмал и сахар, разрушаются в концентрированной серной кислоте; вода связывается с кислотой и от ткани остается мелкодисперсный углерод. В разбавленной кислоте целлюлоза и крахмал распадаются с образованием сахаров. При попадании на кожу вызывает ожоги [7-12].

2.4 Химическая схема процесса

1.Сжигание серы

При получении обжигового газа путем сжигания серы отпадает необходимость очистки от примесей. Стадия подготовки будет включать лишь осушку газа и утилизацию кислоты. При сжигании серы протекает необратимая экзотермическая реакция:

S + O2 = SO2 (1)

с выделением очень большого количества теплоты: изменение Н=-362,4 кДж/моль, или в пересчете на единицу массы 362,4/32 = 11,325 кДж/т = 11325 кДж/кг S.

Расплавленная жидкая сера, подаваемая на сжигание, испаряется (кипит) при температуре 444,6 С; теплота испарения составляет 288 кДж/кг. Теплоты реакции горения серы вполне достаточно для испарения исходного сырья, поэтому взаимодействие серы и кислорода происходит в газовой фазе.

Серу предварительно расплавляют (для этого можно использовать водяной пар, полученный при утилизации теплоты основной реакции горения серы). Так как температура плавления серы сравнительно низка, то путем отстаивания и последующей фильтрации от серы легко отделить механические примеси, не перешедшие в жидкую фазу, и получить исходное сырье достаточной степени чистоты. Для сжигания расплавленной серы используют два типа печей - форсуночные и циклонные. В них необходимо предусмотреть распыление жидкой серы для ее быстрого испарения и обеспечения надежного контакта с воздухом во всех частях аппарата (рис. 1).

Обжиговый газ поступает в котел-утилизатор и далее в последующие аппараты. Если воздух берут в стехиометрическом количестве, т.е. на каждый моль серы 1 моль кислорода, то при полном сгорании серы концентрация будет равна объемной доле кислорода в воздухе С(SO2max) = 21%. Однако обычно воздух берут в избытке, так как в противном случае в печи будет слишком высокая температура.

При адиабатическом сжигании серы температура обжига для реакционной смеси стехиометрического состава составит ~ 1500 С. В практических условиях выше 1300 С разрушается футеровка печи и газоходов. Обычно при сжигании серы получают обжиговый газ, содержащий 13 - 14% SO2.

2. Контактное окисление SO2 в SO3

Контактное окисление диоксида серы является типичным примером гетерогенного окислительного экзотермического катализа.

Реакция окисления диоксида серы

SO2 + 0,5 O2 = SO3 (2)

характеризуется очень высоким значением энергии активации и поэтому практическое ее осуществление возможно лишь в присутствии катализатора.

В промышленности основным катализатором окисления SO2 является катализатор на основе оксида ванадия V2O5 (ванадиевая контактная масса). Каталитическую активность в этой реакции проявляют и другие соединения, но платиновые катализаторы чувствительны даже к следам As, Se, Cl2 b др.

Скорость реакции повышается с ростом концентрации кислорода, поэтому процесс в промышленности проводят при его избытке.

Так как реакция окисления SO2 относится к типу экзотермических, температурный режим ее проведения должен приближаться к линии оптимальных температур. Нижним температурным пределом является температура зажигания ванадиевых катализаторов, составляющая в зависимости от вида катализатора и состава газа 400 - 440С. Верхний температурный предел составляет 600 - 650С и определяется тем, что выше этих температур происходит перестройка структуры катализатора, и он теряет свою активность.

В диапазоне 400 - 600С процесс стремятся провести так, чтобы по мере увеличения степени превращения температура уменьшалась.

Чаще всего в промышленности используют полочные контактные аппараты с наружным теплообменом (рис. 1). Схема теплообмена предполагает максимальное использование теплоты реакции для подогрева исходного газа и одновременное охлаждение газа между полками. Одна из важнейших задач, стоящих перед сернокислотной промышленностью, - увеличение степени превращения диоксида серы и снижение его выбросов в атмосферу. Эта задача может быть решена несколькими методами.

Один из наиболее рациональных методов решения этой задачи, - метод двойного контактирования и двойной абсорбции (ДКДА). Для смещения равновесия вправо и увеличения выхода процесса, а также для увеличения скорости процесса процесс проводят по этому методу. Реакционную смесь, в которой степень превращения SO2 составляет 90 - 95%, охлаждают и направляют в промежуточный абсорбер для выделения SO3. В оставшемся реакционном газе соотношение O2:SO2 существенно повышается, что приводит к смещению равновесия реакции вправо. Вновь нагретый реакционный газ снова подают в контактный аппарат, где на одном-двух слоях катализатора достигают 95% степени превращения оставшегося SO2. Суммарная степень превращения SO2 составляет в таком процессе 99,5% - 99,8 %.

3. Абсорбция триоксида серы

Последняя стадия производства серной кислоты контактным способом - абсорбция SO3 из газовой смеси и превращение его в серную кислоту.

nSO3 + H2O = H2SO4 + (n-1)SO3 + Q (3)

если n > 1, то получается олеум (раствор SO3 в H2SO4)

если n = 1 , то получается моногидрат (98,3% H2SO4)

если n < 1, то получается разбавленная серная кислота

При выборе абсорбента и условий проведения стадии абсорбции необходимо обеспечить почти 100%-ное извлечение SO3 из газовой фазы. В качестве абсорбента нельзя использовать такие растворы, над поверхностью которых велико парциальное давление паров воды. В этом случае еще не растворенные молекулы SO3 будут реагировать с молекулами воды в газовой фазе с образованием паров серной кислоты и быстро конденсироваться в объеме с образованием мельчайших капель серной кислоты, диспергированных в инертной газовой среде, т.е. с образованием сернокислотного тумана:

SO3(г) + H2O(г) H2SO4(г) H2SO4(туман) ; Q > 0

Туман плохо улавливается в обычной абсорбционной аппаратуре и в основном уносится с отходящими газами в атмосферу. Оптимальным абсорбентом является 98,3%-ная серная кислота (моногидрат). Действительно, над этой кислотой практически нет ни паров воды, ни паров SO3. Протекающий при этом процесс можно условно описать уравнением реакции:

SO3 + nH2SO4 + H2O = (n+1) H2SO4

Для обеспечения высокой степени поглощения следует поддерживать в абсорбере концентрацию серной кислоты, близкую к 98,3%, а температуру ниже 100С. Однако в процессе абсорбции SO3 происходит закрепление кислоты и в силу экзотермичности реакции увеличивается температура. Поэтому абсорбцию ведут так, чтобы концентрация H2SO4 при однократном прохождении абсорбера повышалась только на 1-1,5%, закрепившуюся серную кислоту разбавляют в сборнике до 98,3%, охлаждают в наружном холодильнике и вновь подают на абсорбцию, обеспечивая циркуляцию (рис. 2) [7 - 12].

Глава 3. Тесты и задачи прикладного характера

3.1 Тесты типа «А»

1. Равновесие реакции 2Н2S (г.) + 3О2 (г.) = 2Н2О (г.) + 2SO2 (г.) при повышении давления смещается:

а) вправо; +

б) влево;

в) давление не влияет на равновесие.

2. Вещество, ускоряющее ход реакции, но при этом не расходующееся:

а) ингибитор;

б) катализатор; +

в) индикатор.

3. Повышение температуры в реакции 2Н2 + О2 = 2Н2О + Q кДж сказывается следующим образом:

а) не оказывает влияния;

б) смещает равновесие вправо;

в) смещает равновесие влево. +

4. Натрий энергичнее реагирует с водой, чем железо, поскольку:

а) натрий - газообразный элемент;

б) натрий - катализатор этой реакции;

в) натрий - ингибитор этой реакции;

г) натрий - щелочной металл. +

5. Реакцию, протекающую с поглощением тепла, называют:

экзотермической; 3) реакцией разложения;

реакцией соединения; 4) эндотермической. +

6. Реакцию, уравнение которой 2H2O + 2Na = 2NaOH + H2 + Q, относят к реакциям:

замещения, экзотермическим; +

разложения, экзотермическим;

присоединения, эндотермическим;

обмена, эндотермическим.

7. Реакцию, уравнение которой 3H2+N2 2NH3 + Q, относят к реакциям:

1) обратимым, экзотермическим; +

2) необратимым, экзотермическим;

3) обратимым, эндотермическим;

4) необратимым, эндотермическим.

8. В ходе химических реакций тепловая энергия реакционной системы:

не изменяется;

поглощается;

выделяется;

может поглощаться или выделяться. +

9. С наибольшей скоростью при комнатной температуре протекает реакция взаимодействия:

углерода с кислородом;

железа с раствором уксусной кислоты;

железа с соляной кислотой;

растворов гидроксида натрия и серной кислоты. +

10. Какое из перечисленных условий не повлияет на смещение равновесия в системе: 2SO2 + O2 2SО3 + Q?

введение катализатора; +

повышение давления;

повышение концентрации кислорода;

повышение температуры

11 - 12. Реакция, сопровождающаяся 11. выделением теплоты 12. поглощением теплоты называется

обратимой 3) прямой

эндотермической (12+) 4) экзотермической (11+)

13. При протекании химической реакции теплота

поглощается или выделяется +

обязательно поглощается

обязательно выделяется

условие недостаточно для однозначного ответа

14 - 15. Скорость реакции А(г) + В(г) ... увеличивается при

14. 1) понижении концентрации А

повышении концентрации В +

охлаждении

понижении давления

15. 1) нагревании 3) добавлении инертного газа

2) повышение давления + 4) охлаждении

16. Состояние химического равновесия характеризуется

изменением химической природы продуктов

постоянством концентраций веществ +

повышением температуры

понижением давления

17. Состояние химического равновесия означает, что

все реагенты исчезли, полностью образовались продукты

все реагенты сохранились, полностью образовались продукты

часть реагентов исчезла, частично образовались продукты +

часть реагентов исчезла, но продукты не образовались

18. Способ, смещающий равновесие реакции CО2(r) + 2SО3(г) CS2(г) + 4О2(г) - Q вправо (), -- это

увеличение концентрации О2

увеличение концентрации CS2

повышение температуры +

повышение давления

19. Способ, смещающий равновесие реакции 2NH3(г) + 3CuO(T) 3Cu(T) + N2(г) + 3Н2О(ж) + Q вправо (), -- это

увеличение концентрации азота

повышение температуры

понижение давления

повышение давления +

20. Способ, смещающий равновесие гомогенной реакции 2SO2 + О2 2SO3 вправо (), -- это

уменьшение концентрации SO2

уменьшение концентрации кислорода

уменьшение концентрации продукта +

понижение давления

21. Способ, смещающий равновесие гомогенной реакции РСl3 + Сl2 РС15 влево (), -- это

уменьшение концентрации продукта

увеличение концентрации хлора

уменьшение концентрации хлора +

увеличение концентрации РС13

22. При повышении давления равновесие реакции S(T) + 2HI I2 + H2 сместится вправо 3) не сместится +

сместится влево 4) не знаю

23. При понижении давления равновесие реакции СO2 + Н2 СО + Н2O(Ж)

сместится влево + 3) не сместится

сместится вправо 4) не знаю

24. При охлаждении равновесие реакции Н2 + S H2S + Q

сместится влево 3) не сместится

сместится вправо + 4) не знаю

25. При нагревании равновесие реакции N2 + O2 2NO - Q

сместится вправо + 3) не сместится

сместится влево 4) не знаю

26. Равновесие в гетерогенной системе СаО(т) + СО2(г) СаСО3(т) + Q

сместится влево () при

добавлении СаО 3) сжатии

добавлении СаСО3 + 4) нагревании +

27. Скорость прямой реакции N2 + 3H2 2NH3 + Q возрастает при:

1) увеличении концентрации азота; +

2) уменьшении концентрации азота;

3) увеличение концентрации аммиака;

4) уменьшение концентрации аммиака; +

28. При повышении температуры равновесие эндотермической химической реакции смещается в сторону:

1) продуктов реакции; +

2) исходных веществ;

3) эндотермической реакции;

4) экзотермической реакции. +

29. Какой из факторов не оказывает влияния на скорость химической реакции в растворах:

1) концентрация веществ;

2) использование катализатора;

3) использование индикатора; +

4) объем реакционного сосуда. +

30. Для увеличения выхода аммиака по уравнению реакции N2 + 3H2 2NH3 + Q необходимо одновременно:

1) повысить температуру, понизить давление;

2) повысить давление, понизить температуру; +

3) повысить давление и температуру;

4) понизить давление и температуру.

31. Скорость химической реакции между металлом и серой не зависит от:

1) температуры;

2) площади поверхности соприкосновения веществ;

3) давления; +

4) природы металла.

32. С наименьшей скоростью протекает реакция между:

1) железным гвоздем и 4%-ным раствором CuSO4; +

2) железной стружкой и 4%-ным раствором CuSO4;

3) железным гвоздем и 10%-ным раствором CuSO4;

2) железной стружкой и 10%-ным раствором CuSO4;

33. Химическое равновесие в системе СО2(г) + С(т) 2СО(г) - 173 кДж смещается в сторону продукта реакции при:

1) повышении давления;

2) повышении температуры; +

3) понижении температуры;

4) использовании катализаторов. [13 - 15]

3.2 Тесты типа «В»

1. Скорость химической реакции характеризует:

изменение количеств веществ за единицу времени в единице объема или единице площади; +

время, за которое заканчивается химическая реакция;

число структурных единиц вещества, вступивших в химическую реакцию;

движение молекул или ионов реагирующих веществ относительно друг друга.

2. Скорость химической реакции между медью и азотной кислотой зависит от:

массы меди;

объема кислоты;

концентрации кислоты; +

объема колбы.

3. Скорость химической реакции между цинком и кислотой зависит от:

понижения давления;

природы кислоты; +

повышения давления;

присутствия индикатора.

4. При увеличении температуры на 30 °С скорость реакции возрастает в 8 раз. Чему равен температурный коэффициент реакции?

1) 8; 2) 2; + 3) 3; 4) 4.

5. С большей скоростью идет взаимодействие соляной кислоты с:

1) Сu; 2) Fe; 3) Mg; 4) Zn. +

6. Скорость химической реакции горения угля в кислороде уменьшается при:

увеличении концентрации кислорода;

повышении температуры;

понижении температуры; +

повышении давления.

7. Молекулы оксида азота (IV) (бурого цвета) могут в определенных условиях димеризоваться, образовав бесцветную жидкость N2O4: 2NO2 N2O4 + 55 кДж/моль.

Чтобы оксид азота (IV) максимально перевести в бесцветный димер, необходимо систему:

охладить; +

нагреть;

подвергнуть облучению солнечным светом;

выдерживать при комнатной температуре длительное время.

8. Химическое равновесие в системе C4H10(г) C4H8(г) + H2(г) - Q

можно сместить в сторону продуктов реакции:

повышением температуры и повышением давления;

повышением температуры и понижением давления; +

понижением температуры и повышением давления;

понижением температуры и понижением давления.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать