Электробезопасность

Для свежего масла пробивное напряжение должно быть не менее 30 кВ.

Масло с таким пробивным напряжением может быть залито в ряд трансформаторов

без специальной подготовки. Для трансформаторов 35 кВ и выше требования

более жесткие.

Снижение пробивного напряжения свидетельствует, как правило, о

загрязнении масла водой, воздухом, волокнами и другими примесями.

Практически любое повреждение в трансформаторе со временем приводит к

снижению пробивного напряжения масла.

Тангенс угла диэлектрических потерь масла (tg ? масла) характеризует

свойства трансформаторного масла как диэлектрика. Диэлектрические потери

для свежего масла характеризуют его качество и степень очистки, а в

эксплуатации - степень загрязнения и старения масла. Ухудшение

диэлектрических свойств (увеличение tg ?) приводит к снижению изоляционных

характеристик трансформатора в целом.

Для определения tg ? масло заливают в специальный сосуд с

цилиндрическими или плоскими электродами. Измерение производят с

применением моста переменного тока Р525 или Р5026, а также другого типа.

Изготовитель трансформаторного масла нормирует tg ? при температуре 90

°С. Для комплексной оценки состояния трансформатора и его узлов в

эксплуатации tg ? целесообразно измерять при всех трех температурах, т.е.

при 20, 70 и 90 °С.

Пробивное напряжение и тангенс угла диэлектрических потерь определяют в

электротехнической лаборатории. Они не всесторонне характеризуют степень

годности и степень старения масла. Поэтому в химической лаборатории

проверяют дополнительно ряд физико-химических показателей трансформаторного

масла. В их числе следующие.

Цвет масла у большинства масел светло-желтый. У высококачественных

масел, изготовляемых в настоящее время (марки ГК или Т-1500), цвет светлый.

В эксплуатации под влиянием ряда факторов (в частности, нагрева,

загрязнений, электрического поля) из-за образующихся смол и осадков масло

темнеет. Темный цвет свежего масла характеризует отклонения в технологии

изготовления масла на заводе-изготовителе. Показатель цвета масла служит

для ориентировочной оценки его качества как в отечественной, так и в

зарубежной практике.

Механические примеси - нерастворенные вещества, содержащиеся в масле в

виде осадка или во взвешенном состоянии. Волокна, пыль, продукты

растворения в масле компонентов, применяемых в конструкции трансформатора

(краски, лаки и т.п.), просматриваются на просвет в стеклянном сосуде после

предварительного встряхивания. Другие примеси появляются в масле после

внутренних повреждений (электрической дуги, мест перегревов) в виде

обуглившихся частиц. При очень сильном загрязнении масло подлежит

восстановлению или замене.

По мере старения в масле появляются осадки (шлам), которые, осаждаясь

на изоляции, ухудшают ее изоляционные свойства.

Примеси у большинства трансформаторов проверяют на просвет визуально.

Если они не обнаруживаются, то считается, что их количество не превышает 50

г на 1 т масла. У особо ответственных трансформаторов (более 750 кВ)

предельно нормируемое количество примесей составляет 5-15 г/т. Такое

количество примесей можно фиксировать только с применением более точных

методов контроля, например некоторое количество масла пропускается через

фильтр, который взвешивается до и после прокачки масла; разность массы

показывает количество осадка.

Влагосодержание как показатель состояния масла тщательно контролируется

в эксплуатации. Ухудшение этого показателя свидетельствует о потере

герметичности трансформатора или о работе в недопустимом нагрузочном режиме

(интенсивное старение изоляции под воздействием значительных температур).

Влагосодержание определяется по количеству водорода, выделяющегося при

взаимодействии масла с гидридом кальция за определенное время.

Температура вспышки масла характеризует степень испаряемости масла. В

эксплуатации она постепенно увеличивается за счет улетучивания легких

фракций (низкокипящих). Температура вспышки для обычных товарных масел

колеблется в пределах 130-150 °С, а для арктического масла - от 90 до 115

"С и зависит от упругости их насыщенных паров. Чем ниже упругость паров,

чем выше температура вспышки, тем лучше можно дегазировать и осушать масло

перед заливкой в трансформаторы. Минимальная температура вспышки масла

установлена не столько по противопожарным соображениям (хотя это также

является важным фактором), сколько с точки зрения возможности глубокой их

дегазации. В отношении пожарной безопасности большую роль играет

температура самовоспламенения - это температура, при которой масло при

наличии воздуха над поверхностью загорается самопроизвольно без поднесения

пламени, у трансформаторных масел эта температура равна примерно 350-400

°С.

Из-за испарения легких фракций ухудшается состав масла, растет

вязкость, образуются взрывоопасные и другие газы. При разложении масла под

воздействием высоких температур (электрической дуги) его температура

вспышки резко снижается.

Для определения температуры вспышки масло заливается в закрытый сосуд

(тигль) и нагревается. Выделяемые пары масла, смешиваясь с воздухом,

образуют смесь, которая вспыхивает при поднесении к ней пламени или под

воздействием электрической дуги.

Кислотное число масла - это количество едкого кали (КОН), выраженного в

миллиграммах, которое необходимо для нейтрализации свободных кислот в 1 г

масла. Этот показатель характеризует степень старения масла, вызванного

содержанием в нем кислых соединений. Он служит для предупреждения появления

в масле продуктов глубокого окисления в действующем оборудовании (осадки,

нерастворимые в масле). Кислотное число не должно превышать 0,25 мг КОН на

1 г масла.

Водорастворимые кислоты и щелочи, содержащиеся в масле, свидетельствуют о

низком качестве масла. Они могут образовываться в процессе изготовления

масла при нарушении технологии производства, а также в эксплуатации в

результате окисления масел. Эти кислоты вызывают коррозию металла и

способствуют старению твердой изоляции.

Для обнаружения кислот применяется 0,02 %-ный водный раствор

метилоранжа, а для обнаружения щелочи и мыл -1 %-ный спиртовой раствор

фенолфталеина, которые меняют свой цвет в присутствии нежелательных

компонентов. При наличии водорастворимых кислот и щелочей производится

регенерация масла.

Стабильность масла проверяется в эксплуатации при получении партий

свежего масла путем проведения его искусственного старения (окисления) в

специальных аппаратах. Не всегда свежее, вновь прибывшее масло

соответствует действующим нормам. Масло с неудовлетворительными

характеристиками должно возвращаться заводу-изготовителю. Стабильность

масла характеризует долголетие масла, определяет срок его службы и

выражается двумя показателями - процентным содержанием осадка и кислотным

числом.

Натровая проба характеризует степень отмывки масла от посторонних

примесей. Этот показатель также используется лишь для свежего масла и в

эксплуатации не проверяется.

Температура застывания проверяется для масла трансформаторов,

работающих в северных районах. Эта наибольшая температура, при которой

масло застывает настолько, что при наклоне пробирки под углом 45° его

уровень в течение 1 мин остается неизменным. Недопустимое повышение

вязкости масла из-за снижения температуры окружающего воздуха может стать

причиной повреждения подвижных элементов конструкции трансформатора

(маслонасосы, РПН), а также ухудшает теплообмен, что приводит к перегреву и

старению изоляции (особенно витковой) токоведущих частей трансформатора.

Газосодержание масла в мощных герметичных трансформаторах должно

соответствовать нормам. Измерение- этого показателя производится

абсорбиометром. Возможно также измерение суммарного газосодержания с

помощью хроматографа. Косвенно по этому показателю определяется

герметичность трансформатора. Повышение содержания газа (в том числе

воздуха) в масле приводит к ухудшению его свойств - возрастает

интенсивность окисления масла кислородом воздуха, и, кроме того, несколько

снижается электрическая прочность изоляции активной части трансформатора.

Для всестороннего изучения свойств свежего масла используют и другие

показатели, которые здесь не рассматриваются.

3.2. ИСПЫТАНИЯ ТРАНСФОРМАТОРОВ БЕЗ ВЫВОДА ИЗ РАБОТЫ

Хроматографический анализ растворенных в масле газов

Около 20 лет назад, в дополнение к изложенному выше традиционным

методам контроля за состоянием трансформатора, стали применять

Хроматографический анализ растворенных в масле газов (ХАРГ) в качестве

эффективного средства ранней диагностики медленно развивающихся

повреждений. В настоящее время ХАРГ широко применяют во всех развитых

странах, существуют международные нормы как по процедуре ХАРГ, так и по

трактовке результатов анализа.

В СССР применяют ХАРГ во всех энергосистемах, причем на Украине

благодаря применению ХАРГ существенно уменьшен объем обслуживания

трансформаторов (увеличена периодичность обязательного применения некоторых

традиционных измерений). Измерения tg ?из, сопротивления изоляции,

сопротивления обмоток постоянному току, потерь XX при пониженном напряжении

обязательны при вводе в эксплуатацию, капитальном ремонте, а также по

требованию изготовителя; в остальных случаях допускается не производить эти

измерения (решение Минэнерго УССР от 1980 г.).

Хроматографический метод позволяет:

. следить за развитием процессов в трансформаторе;

. предвидеть повреждения, не обнаруживаемые традиционными способами;

. характеризовать повреждения и ориентироваться при определении места

повреждения.

При чувствительности анализа 10-4-10-5 % объема надежно фиксируются

такие виды повреждений, как перегревы конструкционных частей трансформатора

или его твердой изоляции.

При существующем рабочем фоне газов в масле действующих трансформаторов

своевременное обнаружение дефектов изоляции, поврежденной частичными

разрядами, затруднительно.

Из-за скоротечности витковых и межкатушечных замыканий

Хроматографический анализ неэффективен и не выявляет такие повреждения.

При превышении предельных значений характерных газов в целях выявления

динамики их роста в масле трансформатора применяется способ периодической

дегазации масла на действующих трансформаторах с последующим

хроматографическим анализом газосодержания масла (спектра, динамики роста).

При дегазации трансформатор как бы кратковременно очищается от газов, чтобы

затем лучше проявлялась динамика роста газов.

Хроматографический метод не позволяет учитывать незначительные

изменения в состоянии трансформаторов и устанавливать связь между

серьезностью повреждения и скоростью изменения концентрации газов. Почти

невозможно определить зарождение изменения недостатка конструкции

трансформатора при опасном повреждении изоляции "ползущим" разрядом

(например, при повреждении в первом канале между обмоткой ВН и изоляционным

цилиндром). В этот момент повреждения количество газа (его спектр) не

превышает (или находится на уровне) предельных значений составляющих

спектра газов рабочего фона. В завершающей же стадии "ползущий" разряд

скоротечен, и поэтому хроматографическим анализом его невозможно

своевременно выявить.

Для определения наличия повреждения в работающем трансформаторе

посредством анализа растворенных в масле газов применяют маслоотборное

устройство, систему выделения растворенных в масле газов, газоанализатор,

нормировочные данные по отбраковке трансформатора.

Хроматографический анализ масла выполняется в энергосистемах в

соответствии с действующими указаниями.

В Донбассэнерго была проведена работа по проверке хранения

(сохранности) газов в пробе масла в шприце. Установлено, что после двух

недель хранения концентрация углеводородных газов, оксида и диоксида

углерода уменьшается не более чем на 20 %, а водород почти полностью

исчезает из пробы масла. В зарубежной практике конструкция шприцов дает

возможность хранить образцы масла около 2 мес. Поэтому при организации

работы по хроматографии вопрос возможной длительности хранения пробы масла

в шприцах следует учитывать.

Существует несколько способов выделения газов из масла, которым

соответствуют свои способы отбора пробы масла. Наибольшее распространение

как в отечественной, так и в зарубежной практике нашел метод отбора пробы

масла в стеклянные шприцы объемом 5 и 10 мл. Для отбора пробы масла на

трансформаторе имеется специальный патрубок. Перед отбором патрубок должен

быть очищен от загрязнений, при этом для удаления застоявшегося в патрубке

масла необходимо слить некоторое его количество.

Заполненный маслом шприц с пробкой помещают в специальную тару с

гнездами для шприцов, маркируют пробу и отправляют в лабораторию. При

маркировке пробы следует фиксировать энергообъект (электростанция или

подстанция), стационарный номер трансформатора, место отбора пробы (бак,

устройство РПН, ввод), дату отбора, кем выполнен отбор. Основное требование

при отборе и доставке пробы масла в центральную лабораторию - обеспечить

герметичность и не допустить загрязнения или увлажнения масла.

Экстрагирование (выделение газов в стеклянном сосуде с применением

вакуума и барботирования) масла является наиболее распространенным в

отечественной и зарубежной практике. Выделенный объем газа разделяется в

хроматографе на составляющие.

В отечественной и мировой практике определяют содержание (концентрацию)

следующих газов: углекислого газа СО2, оксида углерода СО, водорода Н2,

кислорода О2, азота N2; углеводородов - метана СН4, ацетилена С2Н2, этилена

С2Н4, этана C2H6 и др. Кроме того, определяют соотношение концентраций

некоторых наиболее показательных (характерных) газов и рост их концентрации

по сравнению с предшествующим регулярным измерением.

Отечественные нормы, разработанные ВНИИЭ при участии ряда других НИИ,

предусматривают использование информации по концентрации газов:

а) для выявления дефектов твердой изоляции - СО2;

б) для выявления повышенного нагрева металла и частичных рязрядов (ЧР)

в масле (дефекты токоведущих частей, в первую очередь контактных

соединений, повышенный нагрев поверхности магнитопровода и конструкционных

деталей, в том числе с образованием короткозамкнутых контуров), С2Н2, С2Н4;

при пленочной защите дополнительно используют концентрации водорода и

метана, а также скорость роста концентрации этих четырех газов и этана. По

этим данным определяют, где расположен источник ЧР - в масле или в твердой

изоляции. Более подробную информацию о степени опасности дефекта получают

по отношениям концентраций характерных газов.

Анализ различен для старых и новых трансформаторов, например в старых

трансформаторах наличие СО и СО2 может характеризовать не наличие дефекта,

а естественный повышенный тепловой износ.

Перегревы конструкционных частей и магнитопровода в трансформаторе

подразделяются по температуре на две группы: перегревы с температурой ниже

350 °С, перегревы с температурой 350-450 °С.

Характерными газами для перегревов конструкционных частей и

магнитопровода в силовых трансформаторах являются этилен и ацетилен. Вопрос

о выводе трансформатора в капитальный ремонт решается при появлении в масле

трансформаторов одного из этих газов или обоих вместе в определенных

количествах.

Перегревы твердой электрической изоляции силовых трансформаторов можно

фиксировать только посредством ХАРГ. Газовое реле в этом случае не

реагирует и может начать действовать лишь в завершающей стадии повреждения

изоляции, сопровождающейся значительным газовыделением (например, при

завершении "ползущего" разряда). Характерный газ при перегреве твердой

изоляции -диоксид углерода СО2. Вывод трансформатора в ремонт для

обнаружения повреждения, вызванного перегревом (повреждением) твердой

изоляции, производится по предельным значениям газов спектра, особенно СО2.

При ХАРГ следует учитывать способ защиты масла от увлажнения. При

защите воздухоосушителем в спектре буде отмечен кислород, при азотной

защите - азот. Наличие воздуха (кислорода) в спектре в случае пленочной

защиты показывает потерю ее герметичности.

При установлении характера повреждения и оценке степени его опасности

достоверность анализа зависит от количества проведенных анализов за

конкретный промежуток времени. В отечественной практике принята

периодичность отбора проб масла для ХАРГ 1 раз в б мес, для вновь вводимых

в работу трансформаторов 220-500 кВ, а также 110 кВ мощностью 60 МВ.А и

более - ежедневно в течение первых трех суток работы, затем через 1, 3 и 6

мес. Для трансформаторов 750 кВ и выше дополнительно производится ХАРГ

через две недели после включения.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

Правила технической эксплуатации электроустановок потребителей и правила

техники безопасности при эксплуатации электроустановок потребителей, М.:

Энергоатомиздат, 1986.

В.Ф.Могузов «Обслуживание силовых трансформаторов», М.: Энергоатомиздат,

1991.

В.А.Козлов, Л.М.Куликович «Прокладка, обслуживание и ремонт кабельных

линий», Л.: Энергоатомиздат, 1984.

-----------------------

Рис. 1-6.

Рис. 1-7.

Страницы: 1, 2, 3, 4, 5, 6, 7



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать