Магма и магмоообразование
p align="left">1. За исключением «холодных интрузий» серпентинитов, формирование ультрамафических тел сопровождалось внедрением высокомагнезиальной ультраосновной магмы вдоль стратиграфически или структурно ослабленных поверхностей во вмещающих породах.

2. Конечным продуктом отвердевания внедрившейся магмы в ряде случаев (в том числе и в случае некоторых наиболее крупных из известных ультрамафических тел) являлись дуниты или дунит-гарцбкргиты. Весьма вероятно, что все серпентинитовые тела альпийской ассоциации на соответствующей стадии своего развития состояли главным образом из кристаллического оливина и пироксена (особенно энстатита) в качестве второй, но нередко подчиненной по количеству составной части.

3. Температура на контакте даже для крупных тел, слабо затронутых серпентинизацией, соответствуют нижним ступеням метаморфизма и были, видимо, не выше, а ниже 500єС.

Этот вывод, основанный на данных, полученных при изучении метаморфизма вмещающих пород, вероятно, противоречит любой гипотезе, предполагающей внедрение нацело или частично жидкой магмы. В лабораторных условиях магнезиальный оливин такого типа, который встречается в дунитах, начинает плавиться при температуре около 1600єС и полностью расплавляется только при 1800єС. Даже допуская возможное понижение температуры на несколько сотен градусов в присутствии воды и избыточной кремнекислоты. Мы вынуждены прийти к заключению, что перидотитовый расплав может существовать только при очень высоких температурах. Однако породы, вмещающие альпийские перидотитовые интрузии, даже при тщательном их изучении не обнаруживают каких-либо признаков, указывающих на существование хотя бы близких температур. На этом основании классическая гипотеза Фогта, согласно которой перидотитовые расплавы развиваются в результате переплавления оливиновых кристаллов, накапливающихся под воздействием силы тяжести на ранних стадиях кристаллизации базальтовой магмы, отбрасывается. Дополнительным фактом, подтверждающим предположение, согласно которому перидотитовый расплав никогда не возникает во внешней (наружной) оболочке земной коры, является почти полное отсутствие лав соответствующего состава.

Несмотря на веские доказательства, указывающие на невозможность существования перидотитового расплава, некоторые соотношения, наблюдаемые в поле, на первый взгляд трудно совместить с этой гипотезой. В частности, Хесс указывал, что иногда встречаются породы, которые могут быть интерпретированы как тонкозернистые закаленные краевые фации дунитовых интрузий. Кроме того, он отмечал существование узких разветвляющихся даек перидотитов, сложенных свежими недеформированными сросшимися кристаллами оливина.

Другие авторы упоминают об узких трубках дунитов, пересекающих, и, по-видимому, внедренных в пироксениты, тогда как многочисленные отмеченные примеры энстатитовых пироксенитов, секущих перидотиты, наводят на мысль о возможности существования чистых энстатитовых магм в виде подвижных расплавов. Хесс для объяснения возникающих затруднений высказал предположение, что первичная магма перидотитов и серпентинитов представляла собой насыщенный водой ультрамафический расплав, приближающийся по составу к серпентинитам. Он предположил также, что эта магма образуется при дифференциальном плавлении перидотитового субстрата под действием локального давления очень большого утолщающегося участка перекрывающей гранитной коры в тех местах, где она была смята в складки под действием орогенических сил. Эта гипотеза должна объяснить многочисленные наблюдающиеся факты, а именно: а) отсутствие высокотемпературного метаморфизма в контактах перидотитовых; б) отсутствие перидотитовых лав (объясняется предположением, что перидотитовые магмы сохраняют высокое содержание воды только при высоких давлениях); в) связь перидотитовых поясов с зонами отрицательных аномалий силы тяжести (гранитная оболочка увеличена) в активных орогенических зонах, таких как островные дуги Индонезии и Карибского моря. Однако гипотеза основывается на предположении, что водные ультрамафические расплавы могут быть образованы и способны существовать в пределах значительного отрезка температур, слишком низких, чтобы могло произойти значительное плавление прогнувшейся книзу гранитной массы.

Под влиянием гипотезы Хесса Боуэн и Таттл провели в лабораторных условиях изучение системы MgO-SiO2-H2O при температурах 900єС и давлениях, соответствующих глубине 7 км. В этих условиях и даже при 1000єС и давлении в два раза меньшем жидкой фазы не наблюдалось. По словам Боуэна ти Таттла: «Нет никаких данных, что вообще может существовать какая-либо магма, которую можно было бы назвать серпентиновой и, конечно, ее существование невозможно ниже 1000єС. Серпентиновая магма гипотезы Хесса должна быть отвергнута как не соответствующая экспериментальным данным».

Боуэн предложил следующий механизм образования перидотитовых интрузий, который в настоящее время считается одним из наиболее вероятных. Согласно Боуэну, перидотитовые «магмы» ко времени внедрения состояли в основном из кристаллов оливина. Гравитационное оседание оливина, отделяющегося от базальтовой магмы, - хорошо установленный механизм, посредством которого могут образовываться «магмы» подобного типа. Был ли оливин настолько подвижным, чтобы внедриться в глубинных условиях? По мнению Боуэна, необходимая степень мобильности была обусловлена эффектом смазки, вызванным небольшим количеством межгранулярного магматического расплава или даже водяного пара. Для дунитов и перидотитов, как правило, характерна структура, которая могла возникнуть в результате деформаций и течения по существу кристаллической массы: волнистое погасание оливина, а для многих пород полосчатая или даже типично милонитовая текстура. Эти особенности говорят о том, что оливин представляет собой минерал, чувствительный к пластическим деформациям под воздействием глубинных условий, и что перидотиты альпийского типа обычно подвергались пластическим деформациям после отвердевания. Лабораторные исследования в условиях температуры и давления, соответствующих глубине около 18 км, подтверждают это предположение. Если, кроме того, предположить, что медленно двигающаяся кристаллическая перидотитовая масса поглощает воду, особенно на периферии, из окружающих насыщенных водой осадочных пород и вследствие этого претерпевает частичную серпентинизацию, то, вероятно, можно говорить о том, что в результате этого процесса возрастает подвижность интрузивного тела.

Против гипотезы Боуэна может быть выдвинут следующий аргумент: если альпийские перидотиты представляют собой кристаллическую фракцию, образовавшуюся в результате дифференциации базальтовой магмы, они должны сопровождаться другими, более богатыми кремнеземом породами. Представляющими собой дополнительный жидкий дифференциат. В действительности такие сопутствующие породы, как правило, или отсутствуют, или их очень мало. Но в большинстве магматических провинций мира внедрению ультрамафических тел предшествовало излияние больших объемов основных магм (спилиты и другие основные породы). Можно предположить, что спилиты, обычно бедные оливином, представляют собой тот самый дифференциат.

Боуэн и Таттл объясняют также и происхождение энстатит-пироксенитовых жил, секущих дуниты и тонких жил в пироксенитах. Водяной пар, насыщенный SiO2 и проникающий по трещинам в дуните при температуре выше 650єС, может превратить породу стенок трещины в энстатитовый пироксенит. Ветвящаяся форма и небольшая мощность таких жил, а также значительные размеры энстатитовых кристаллов подтверждают подобный способ происхождения. Возможна и обратная картина, когда пироксениты под влиянием водяного пара, недосыщенного SiO2, при таких же температурах могут быть местами превращены в дуниты.

Многие ультрамафические интрузии альпийского типа представляют собой серпентиниты. Нет сомнения в том, что серпентин образован из оливина и пироксена (энстатита), так как известны многочисленные примеры перехода от перидотитов к серпентинитам, а во многих серпентинитах имеются реликтовые зерна неизмененного оливина или пироксена или же присутствуют псевдоморфозы серпентина по одному из этих минералов. Существуют многочисленные полевые, химические и петрографические данные, которые должна объяснять теория серпентинизации. Вот некоторые из них.

1. Многие ультрамафические интрузивные породы состоят частично из перидотитов, а частично из серпентинитов. Совершенно ясно, что в подобных телах распространение серпентинита не связано с близостью к земной поверхности или уровнем грунтовых вод. Эти условия хорошо наблюдаются в некоторых крупных перидотитовых поясах на юге Новой Зеландии, где в ряде мест вдоль горных гребней на высоте от 200 до 1800 м выходят свежие дуниты, в то время как в других местах глубокие послеледниковые каньоны на глубине 1 км пересекают именно серпентиниты. Таким образом, совершенно ясно, что серпентинизация перидотитов представляет собой процесс, не связанный с выветриванием и родственными гипергенными явлениями.

2. В отношении того, как связать распространение серпентинитов с формой интрузивного тела, мнения разделяются. Одни считают, что серпентинизация в большинстве случаев либо равномерно распространена во всем ультраосновном теле, либо характеризуется случайным распределением, не связанным с границами тела. Однако в немногих случаях серпентинизация возрастает по направлению от центральной части (ядра) ультраосновного тела. По мнению других исследователей, периферическая серпентинизация перидотитов представляет собой более важное явление. В общем, пространственная связь серпентинитов с перидотитами может быть, по-видимому, в равной степени объяснена двумя различными способами серпентинизации, предусматривающими соответственно воздействие внутренних (то есть магматических) или внешних вод.

Серпентинизация оливина, во всяком случае, в начальной стадии, очень часто проявляется во многих вулканогенных и плутонических породах, включая базальты, пикриты и перидотиты стратифицированных лополитов. В этих случаях процесс, по-видимому, совершается в основном под действием позднемагматических водных растворов, действующих на все еще нагретую породу. Конечно, серпентинизация магнезиальных оливинов метаморфических пород должна происходить при температурах, не превышающих нескольких сотен градусов. Аналогично серпентинизация перидотитовых тел альпийского типа может быть обусловлена воздействием водных растворов на умеренно нагретые кристаллические перидотитовые тела во время или после внедрения.

Экспериментальные работы Боуэна и Таттла подтверждают это основное положение. Они показали, что содержащий воду магнезиальный оливиновый расплав, охлажденный до 1000єС, будет представлять собой скопление оливиновых кристаллов, промежутки между которыми будут заполнены парами воды. Эта масса будет охлаждаться без каких-либо химических изменений до температуры около 400єС, когда оливин начнет замещаться серпентином и бруситом, причем это замещение будет продолжаться до тех пор, пока будет существовать свободная вода. Температура, при которой может начаться серпентинизация, заметно ниже в том случае, когда оливин содержит железо, и в случае богатого железом оливина температура, возможно, настолько низка, что серпентинизация этого минерала в глубинных условиях, по-видимому, невозможна. Серпентинит может образоваться при 500єС либо путем воздействия чистой воды на оливиново-энстатитовые смеси, либо из одного оливина, если водный раствор обогащен СО2 и, таким образом, способен удалить оксид магния из системы. Выше температуры 500єС оливин нельзя превратить в серпентинит. В присутствии водных растворов, способных привносить SiO2 или выносить MgO, оливин при высоких температурах испытывает другие изменения:

1) между 500 и 625єС - оливин>тальк;

2) между 625 и 800єС - оливин>энстатит>тальк;

3) выше 800єС - оливин>энстатит.

Прежде чем пересмотреть различные гипотезы серпентинизации в свете этих данных, следует рассмотреть предполагаемые объемные взаимоотношения. Серпентинизация оливина при простой добавке воды, SiO2 и CO2 без выноса оксида магния должна вызвать значительное увеличение объема, как это иллюстрируется классическими уравнениями:

2Mg2SiO4 + H2O + CO2 > H4Mg3Si2O9 + MgCO3

оливин привнос серпентин магнезит

280 г, 88 см3 276 г, 110 см3 84 г, 28 см3

и

3Mg2SiO4 + 4H2O + SiO2 > 2H4Mg3Si2O9

оливин привнос серпентин

420 г, 131 см3 552 г, 220 см 3.

Однако наблюдаемые под микроскопом структуры и полевые взаимоотношения недеформированных серпентинитов ясно показывают, что серпентинизация обычно сопровождается очень небольшим увеличением объема или же увеличение объема не происходит совершенно. Поэтому вышеприведенные уравнения не могут отражать истинный ход серпентинизации дунитов. Более вероятна реакция, в которой оливин замещается таким же объемом серпентинита, а избыток MgO и SiO2 выносится в раствор. Это приближенно может быть выражено следующим уравнением:

5Mg2SiO4 + 4H2O > 2H4Mg3Si2O9 + 4MgO + SiO2

оливин привнос серпентин выносится в растворе

700 г, 219 см3 72 г 552 г, 220 см3 160 г 160 г.

Чтобы такая реакция произошла, суммарная концентрация MgO SiO2 в водном растворе, который удаляется из системы, не должна превышать некоторого предельного объема. Поэтому большое количество воды останется свободным. Так, если 700 г. оливина будет превращено в серпентин в результате химического воздействия равного веса воды, то 72 г. воды должны остаться в серпентините, а остающиеся 628 г. должны вынести из системы 160 г. MgO и 60 г. SiO2. Кроме того, если из ультрамафической породы при температурах 200 или 300єС будут непрерывно удаляться растворы, настолько обогащенные оксидами магния и кремния, то должен произойти магнезиальный метасоматоз окружающих пород. Подобные явления отмечаются редко, хотя известны многочисленные примеры региональной силификации в серпентинитовых поясах. Таким образом, неизбежно напрашивается вывод, что серпентинизация перидотитов путем равнообъемного замещения требует больших количеств свободной воды. Хесс, выдвинувший гипотезу «серпентинитовой магмы», избежал этого затруднения. Он предположил, что в начале происходит предварительная кристаллизация оливина, а затем уже последующая реакция между оливином и почти равным объемом остаточного водного кремнекислого раствора с образованием серпентинита:

3Mg2SiO4 + H4SiO4 + 2H2O > 2H4Mg3Si2O9

оливин 61 см3 ± 36 см3 ± серпентин

131 см3 220 см3.

Однако, как уже отмечалось, гипотеза Хесса должна быть отвергнута как несовместимая с имеющимися экспериментальными данными.

Учитывая все вышеизложенное о процессе серпентинизации, а также различные представления о природе и происхождении перидотитовой магмы, правомерно существование двух альтернативных гипотез.

1. Перидотитовые магмы представляют собой водные магнезиальные расплавы, возможно приближающиеся по составу к серпентиниту. Серпентинизация является либо позднемагматическим, либо вторичным (автометасоматическим) процессом - реакцией между еще нагретым оливином и водными расплавами или растворами, образовавшимися из кристаллизующейся магмы. Этой точки зрения придерживались Лодочников, Хесс и др. Однако она выглядит совершенно несостоятельной в свете экспериментальных данных, полученных Боуэном и Таттлом.

2. Перидотитовые «магмы» состоят в основном из оливиновых и пироксеновых кристаллов, промежутки между которыми заполнены магматической жидкостью или парами воды. Серпентинизация почти соответствует равнообъемному замещению и происходит, по-видимому, при температурах от 200 до 400єС. Необходимая для этой реакции вода, вместе с растворенными в ней SiO2 и СО2, может быть получена из различных источников:

А. В случае слабой серпентинизации небольшое количество участвующей в реакции воды может иметь магматическое происхождение и серпентинизация может представлять собой автометасоматический процесс. На этом способе образования особенно настаивал Бенсон, и он широко поддерживался многими авторами как хорошо объясняющий серпентинизацию. Однако Боуэн и Таттл показали, что автометасоматоз перидотитов должен скорее вызвать сложную серию замещений, как-то: превращение энстатита в тальк при высокой температуре и изменение оливина в серпентин и брусит при температурах ниже 400єС. То, что и оливин и энстатит очень широко замещаются серпентином (при этом энстатит более устойчив), свидетельствует о том, что автометасоматоз встречается гораздо реже, чем это представлялось до сих пор. Там, где тальк образует псевдоморфозы по энстатиту, автометасоматоз более вероятен.

Б. Серпентинизация, в некоторых случаях, может быть обусловлена действием внешней посторонней магматической воды, поступившей, например, из близрасположенных интрузивных гранитов. Однако известны многочисленные случаи (например, серпентиниты Калифорнии и крупные тела перидотитовых серпентинитов юга Новой Зеландии), когда граниты, более молодые, чем ультрамафические интрузии, не были источником магматической воды.

В. Главная масса большого количества воды (и растворенных СО2, SiO2 и др.), необходимого для полной серпентинизации крупных ультрамафических тел, могла быть получена из окружающих, насыщенных водой геосинклинальных осадков или из газов и растворов, двигающихся в стороны и кверху от сходных пород, испытывающих на глубине, ниже ультрамафических тел, уплотнение, цементацию и метаморфизм, либо даже из двигающегося кверху потока ювенильной воды, не связанного ни с каким магматическим источником. Ультрамафические интрузии, медленно внедряющиеся вдоль зон главных дислокаций в геосинклинальных толщах, должны быть легко доступны для таких растворов, двигающихся кверху вдоль тех же ослабленных зон. Растворы сходного происхождения могут играть значительную роль при превращении базальтовых пород в спилиты при натриевом метасоматозе, а также при образовании глаукофановых сланцев. Возможно, в этой связи важно учесть относительно высокое содержание хлора и бора в некоторых серпентинитах, а также отмечаемую способность турмалина, аксинита и других борсодержащих минералов образовывать обогащенные участки в серпентинитовых породах. Хлор и бор присутствуют в малых количествах в несерпентинизированных перидотитах, но их довольно много в морской воде.

В настоящее время в качестве рабочей гипотезы можно принять двойственную концепцию внедрения перидотитовой «магмы» в значительной степени в кристаллическом состоянии с одновременной или последующей серпентинизацией слагающих ее минералов (оливина и энстатита) в результате воздействия водных растворов или паров, происходящих или из окружающих геосинклинальных осадков или из интрузивных тел кислой магмы. Однако эта гипотеза, подобно любой другой гипотезе, может быть подвергнута различным изменениям и уточнениям и даже может быть совсем отброшена, если она окажется несовместимой с фактами, еще не известными в настоящее время.

Экспериментальные данные Б. Майсена и А. Бёттчера (1979) свидетельствуют о значительно более низких температурах образования ультраосновных водонасыщенных расплавов, чем это предполагалось ранее. Эти температуры (около 1300єС) при высоком геотермическом градиенте и высоких содержаниях H2O в слабо дифференцированной мантии на ранних стадиях развития Земли были вполне достижимы при генерации ультраосновных магм, служивших источниками коматитовых лав (некоторые коматиты содержат 10 вес. % воды). При добавлении CO2 в систему перидотит-вода происходит снижение температуры плавления. В интервале давлений 15-30 кбар смещение составляет около 20єС.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать