Магма и магмоообразование
p align="left">Это не значит, однако, что смешение магм вообще не может иметь места. Некоторые необычные горные породы, в которых большое число кристаллических фаз находится в неравновесных парагенезисах, могут представлять собой в ряде случаев продукты смешения двух частично закристаллизованных магм. Одним из возможных примеров являются кейвекиты (Новая Зеландия). Они представляют собой лавы, в которых вкрапленники плагиоклаза, анортоклаза, авгита (с эгириновыми каемками), оливина и бурой роговой обманки погружены в основную массу из олигоклаза, анортоклаза и авгита. Они рассматриваются как базальто-трахитовые гибридные породы. Гораздо большее значение, чем такие редкие породы, как кейвекиты, имеют примеры смешения магм для более распространенных типов лав, особенно для андезитов и базальтов. В лавах из вулканической провинции Сан-Хуан в Колорадо различия состава вкрапленников плагиоклаза слишком сложны, чтобы их можно было объяснить простой дифференциацией. Эти изменения совместимы с механизмом смешения двух магм, содержащих взвешенные кристаллы. Кроме того, авторы работ по провинции Сан-Хуан пришли к выводу, что здесь должно было иметь место весьма тщательное перемешивание больших масс магмы для того, чтобы можно было объяснить однородное распределение вкрапленников полевого шпата в лавах очень протяженных потоков. На основании вышеприведенного примера и на основании весьма широкого распространения вкрапленников плагиоклазов с сильно изменяющимся составом в андезитах и дацитах представляется возможным предположить, что основная функция магматического смешения в эволюции магматического ряда заключается в соединении магм одинакового происхождения, которые ранее обособились в результате дифференциации или ассимиляции.

3.5 Условия кристаллизации магмы

Степень кристалличности и зернистости пород зависит в основном от условий кристаллизации магмы. Полнокристаллические крупно- и среднезернистые породы являются преимущественно интрузивными абиссальными, то есть застывшими на глубине более 1 км. Они образовались в условиях медленного понижения температуры, под большим давлением вмещающих пород, что препятствовало отделению минерализаторов, снижающих вязкость магматического расплава. Если внешнее давление сохраняется в ходе кристаллизации, остаточный расплав магмы значительно обогащается минерализаторами, что создает условия для образования гигантозернистых структур, характерных для пегматитов.

Эффузивные породы, имеющие скрытокристаллическую структуру и часто содержащие вулканическое стекло, образовались на поверхности Земли в условиях резкого падения температуры при незначительном давлении. Вследствие этого расплав быстро терял летучие компоненты. Гипабиссальные породы, сформировавшиеся на небольших глубинах в промежуточных условиях, имеют мелкозернистые и афанитовые структуры.

В природе существуют исключения из выше приведенных условий. Если в интрузивных телах образуется трещиноватость, то минерализаторы (летучие компоненты) легко выделяются из магмы, потеря которых приводит к резкому повышению вязкости магмы и быстрой ее кристаллизации с образованием мелкозернистой структуры (например, при образовании аплитов). Структуры пород, слагающих разные участки одного и того же массива, обычно различны. В краевых частях любых интрузивных и эффузивных тел породы менее раскристаллизованы, чем в центральных участках.

Процесс кристаллизации магмы определяется в основном двумя факторами, из которых складывается кристаллизационная способность вещества: а) количеством образующихся центров кристаллизации и б) скоростью роста кристаллов. Кристаллизация расплава возможна лишь при некотором его переохлаждении, потому что в истинно равновесных условиях выделение теплоты при переходе вещества из жидкого в твердое состояние обусловливает расплавление образовавшихся кристаллов, в то время как при переохлаждении этой теплоты оказывается недостаточно (рис. 3.1.). Число центров кристаллизации в районе точки плавления очень незначительно, но оно возрастает с увеличением степени переохлаждения, а затем, пройдя максимум, уменьшается и становится равным нулю. Скорость роста кристаллов также мала вблизи точки плавления, увеличивается по мере удаления от нее, переходит через максимум и уменьшается до нуля. При этом максимумы кривых

скорости роста кристаллов и скорости образования центров кристаллизации не совпадают, что обусловливает наличие нескольких областей переохлаждения с различной кристаллизационной способностью и соответственно с разными типами структур.

Если магма охлаждается медленно и температура ее долго держится вблизи точки плавления, то образуется небольшое количество центров кристаллизации. При очень медленном охлаждении магма может полностью раскристаллизоваться, не достигнув поля, где образуется много центров кристаллизации.

4. Общие закономерности кристаллизации магмы

Главнейшие особенности минерального состава, структуры и текстуры любой магматической породы определяются процессом кристаллизации природного силикатного расплава - магмы. Магма имеет сложный и различный в разных случаях состав. В результате ее кристаллизации обычно выделяется не один твердый минерал, а несколько. В процессе кристаллизации выделившиеся минералы находятся во взаимодействии с расплавом, некоторые из них появляются и исчезают, другие изменяют свой состав, третьи остаются такими, какими они выделелись первоначально. Для того, чтобы представить себе общий ход кристаллизации магмы, как главной стадии образования магматической породы, уяснить порядок выделения минералов, характер взаимных отношений между выделившимися минералами и расплавом, необходимо рассмотреть общие законы кристаллизации силикатных расплавов. Они установлены экспериментально и рассчитаны теоретически, действуют при кристаллизации двух-, трех- и многокомпонентных систем и определяют кристаллизацию магмы, которая с точки зрения физической химии является многокомпонентной системой.

Кристаллизация любого сложного расплава, как естественного, так и искусственного, подчиняется трем законам: 1) закону эвтектики; 2) закону перитектики (прерывно-реакционного взаимодействия) и 3) закону кристаллизации твердых растворов (непрерывно-реакционного взаимодействия) и при кристаллизации сложного многокомпонентного расплава все эти типы соотношений могут проявляться одновременно, то есть одна пара или несколько минералов могут находиться в эвтектических соотношениях между собой и расплавом, друга пара может иметь прерывно-реакционные соотношения и т.д. Перечисленные законы относятся к кристаллизации «сухих», конденсированных расплавов, на кристаллизацию которых не влияет наличие газовой фазы. При кристаллизации расплавов богатых летучими компонентами вышеупомянутые отношения между минералами и расплавом сохраняются, но процесс кристаллизации существенно усложняется.

4.1 Кристаллизация по закону эвтектики

Кристаллизация по закону эвтектикихарактеризуется следующими главными особенностями: 1) выделяющиеся из расплава минералы не меняют во время кристаллизации свой состав и не вступают в реакционное взаимодействие ни между собой, ни с расплавом; при нарушении нормального хода кристаллизации может быть лишь задержка в кристаллизации, обратное расплавление (оплавление) ранее выделившихся твердых кристаллов; 2) порядок выделения минералов из расплава определяется не столько температурой плавления этих минералов, сколько составом кристаллизующегося расплава, концентрацией в нем того или другого компонента; 3) температура начала кристаллизации расплава смеси зависит от состава этой смеси; небольшая прибавка к какому-либо компоненту другого компонента понижает температуру начала кристаллизации; 4) температура конца кристаллизации расплава смеси не зависит от состава смеси; кристаллизация заканчивается всегда при определенной эвтектической температуре; 5) состав последней порции расплава в конце процесса кристаллизации не зависит от состава исходного расплава. Состав последней порции расплава всегда определенный - эвтектический. Эвтектика - это определенное процентное соотношение двух или нескольких компонентов расплава, которые одновременно кристаллизуются при определенной температуре, которая всегда ниже температуры кристаллизации каждого их компонентов в отдельности.

Рассмотрим эвтектическую кристаллизацию на примере системы диопсид-анортит (рис. 4.1). Температура плавления анортита 1550 єС, то есть если взять расплав чистого анортита, то он будет кристаллизоваться при этой температуре пока полностью не раскристаллизуется и температура будет постоянной. Это вытекает из «правила фаз», выражаемого формулой F=(K+2) - P, где F - число возможных изменений условий, К - число компонентов и Р - число фаз (твердых и жидких). Для конденсированных систем, где изменение давления не влияет на ход кристаллизации, это выражение принимает вид: F=(K+1) - P. В данном случае К=1, так как взят расплав только одного анортита и система однокомпонентная. Р=2 (расплав и кристаллы анортита), следовательно F= (1+1) - 2=0.

Прибавление 15% диопсида к расплаву понизит температуру начала кристаллизации до 1510єС. При этом в ходе кристаллизации температура уже может понижаться, так как здесь К=2, Р=2, F=(2+1) - 2=1. Если взять состав расплава с еще большим содержанием диопсида (например, 35%), то температура начала кристаллизации будет еще ниже (1420єС). Поскольку состав расплава можно изменять непрерывно, то полученная кривая выразит температуру начала кристаллизации всех смесей богатых анортитом.

То же самое будет характерно и для смесей богатых диопсидом, температура плавления которого 1400єС. Прибавление 20% анортита понизит температуру начала кристаллизации до 1360єС и т.д. В итоге может быть построена кривая изменения температуры начала кристаллизации для смесей богатых диопсидом. На рисунке 1 видно, что обе кривые пересекаются в точке е. Следовательно, если возьмет расплав, в котором 46% диопсида и 54% анортита, то он начнет кристаллизоваться при наименьшей температуре 1270єС. Точка е соответствует эвтектике и для нее характерна определенная температура. Если исходный расплав имеет эвтектический состав, то с самого начала начнут выделяться одновременно и анортит и диопсид. По правилу фаз температура не изменится, пока не исчезнет весь расплав. К=2, Р=3 (две твердых фазы, диопсид и анортит плюс расплав), F=(2+1) - 3=0. Если же состав исходного расплава не эвтектический, то вначале из расплава будет выделяться только один минерал (тот которого во взятом расплаве больше, чем в эвтектическом). По мере уменьшения количества этого минерала, будет снижаться температура кристаллизации и уменьшаться концентрация этого минерала, пока не достигнет точки эвтектики.

Простая двухкомпонентная система диопсид-анортит имеет большое значение для петрологии. Состав основных магматических пород (например, габбро) почти эвтектический. Отсюда следует вывод, что пироксен и основной плагиоклаз должны кристаллизоваться из магмы одновременно. Состав основной магмы не точно отвечает эвтектике, поэтому первым может начать выделяться либо пироксен, либо плагиоклаз, но в ходе кристаллизации эвтектика будет достигнута. В эвтектических соотношениях находятся такие минералы как кварц и полевой шпат; нефелин и полевой шпат; полевой шпат и цветной минерал; нефелин и цветной минерал. Эвтектические соотношения существуют между цветными и бесцветными минералами любой магматической породы. По этой причине при кристаллизации магмы цветные и бесцветные минералы выделяются одновременно. Поскольку между кварцем и полевым шпатом тоже существует эвтектическое соотношение, оба этих минерал совместно присутствуют во вкрапленниках в гранит-порфирах или риолитах.

В системах с летучими компонентами, эвтектика между двумя минералами может иметь несколько иное количественное соотношение, чем в «сухих» системах, но сохраняется. В тех случаях, когда в дополнение к двум минералам присутствует третий, например, пироксен, плагиоклаз и оливин, то порядок кристаллизации определяется правилом Нернста о понижении растворимости веществ, имеющих общий ион. Так как оливин и пироксен имеют общий ион (Mg, Fe), растворимость оливина в присутствии пироксена значительно уменьшается, и он кристаллизуется раньше полевого шпата даже в тех случаях, когда его содержание невелико. Особенности эвтектики сохраняются не только в тройной системе. Они должны сохраняться и в многокомпонентной системе, какой является магма.

4.2 Кристаллизация по закону перитектики

Кристаллизация по закону перитектики характеризуется следующими особенностями: 1) она возможна лишь в том случае, когда компоненты образуют химическое соединение с инконгруентной (скрытой) точкой плавления. Это означает, что при нагревании данное соединение не может сразу переходить в расплавленное состояние, а разлагается с образованием расплава иного состава и другой твердой фазы. Так, например, в двухкомпонентной системе Mg2SiO4-SiO2 есть соединение Mg2Si2O6, которое не может сразу переходить в расплав того же состава; 2) при кристаллизации по закону перитектики при определенных температурах ранее выделившиеся кристаллы вступают в реакционное взаимодействие с расплавом, в результате которого образуются кристаллы нового минерала; при этом реакционное взаимодействие имеет место только в определенные периоды процесса кристаллизации и поэтому взаимоотношения минералов с магмой и между собой могут быть только прерывно реакционными; 3) порядок выделения минералов строго определенный и не зависит от состава расплава; 4) температура начала и конца кристаллизации в известных пределах зависит от состава смеси; 5) состав последних порций кристаллизующегося расплава в известных пределах также зависит от состава исходного расплава.

В качестве примера рассмотрим «сухую» систему форстерит-кремнезем (Mg2SiO4-SiO2). Если расплав богат форстеритом, то при температуре 1850єС (рис. 4.2) начнут выделяться кристаллы этого минерала. Кристаллизация продолжается при понижении температуры, так как в соответствии с правилом фаз F=(2+1) - 2=1. При температуре 1750єС количество кристаллического форстерита уже будет примерно такое же как количество расплава. При температуре 1670єС расплава будет уже в два раза меньше, чем кристаллов форстерита, а в составе расплава будет больше SiO2. При температуре 1557єС между расплавом, состав которого уже будет составлять 25% от первоначального количества и кристаллами, количество которых составит 75% начнется реакция с образованием клиноэнстатита (точка перитектики - скрытая точка плавления). Согласно правилу фаз, температура не может дальше понижаться, пока не закончится эта реакция, так как здесь уже три фазы (две твердых и расплав), F=(2+1) - 3=0. В результате этой реакции израсходуется весь расплав и кристаллизация закончится. Образуется агрегат, в котором 30% клиноэнстатита и 70% форстерита.

Если расплав по составу соответствовал клиноэнстатиту, то при температуре 1700єС начнут выделяться кристаллы форстерита и при дальнейшем понижении температуры количество их будет увеличиваться. При температуре 1557єС между кристаллами форстерита и расплавом произойдет реакция. Температура в течение этой реакции не изменится, а результате реакции одновременно исчезнут и жидкость и кристаллы форстерита, то есть кристаллизация на этом закончится.

Если взять расплав более богатый кремнеземом, чем клиноэнстатит, то при температуре 1650єС начнут выделяться кристаллы форстерита. Так будет продолжаться до температуры 1557єС, когда начнется реакция между расплавом и форстеритом. Но в результате ее исчезнут уже кристаллы форстерита. Кристаллизация при этой температуре не закончится. Как только исчезнут кристаллы форстерита, температура вновь может понижаться, так как будет опять только две фазы (клиноэнстатит и расплав) и по правилу фаз F=(2+1) - 2=1. При понижении температуры из расплава будут выделяться непосредственно кристаллы клиноэнстатита. При температуре 1550єС их количество достигнет 70%. Так будет продолжаться до температуры 1543єС, когда состав расплава достигнет эвтектики между клиноэнстатитом и кристобалитом. Здесь появится новая твердая фаза (кристобалит) и кристаллизация будет продолжаться уже при постоянной температуре в соответствии с правилом фаз F=(2+1) - 3=0, до полного исчезновения эвтектического расплава.

При кристаллизации расплава еще более богатого кремнеземом кристаллизация начнется с выделения кристаллов кристобалита.

Рассмотренный случай очень важен для петрологии, так как иллюстрирует перитектические реакционные соотношения между оливином и ромбическим пироксеном. Реакционные каемки ромбического пироксена вокруг оливина в магматических породах наблюдаются постоянно. Они образуются в том случае, либо когда перитектическая реакция не доходит до конца, либо в результате полного израсходования кремнезема в расплаве, либо в результате резкого изменения температуры, когда выделившиеся кристаллы оливина не успевают прореагировать с расплавом и ромбический пироксен начнет кристаллизоваться из расплава и нарастать на остатки зерен оливина. Реакционные каемки бывают не только вокруг зерен оливина. На кристаллах ромбического пироксена можно видеть каемки моноклинного пироксена, образующиеся в результате не дошедшей до конца реакции между кристаллами ромбического пироксена и расплавом. В реакционных соотношениях находятся моноклинный пироксен и роговая обманка. Реакция кристаллов моноклинного пироксена с расплавом усложняется участием в ней воды. В реакционных соотношениях находятся роговая обманка и биотит. Таким образом, устанавливается определенный прерывно-реакционный ряд цветных минералов: оливин>магнезиальный пироксен>известково-магнезиальный пироксен>амфибол>биотит.

В ходе кристаллизации магмы отдельные члены этого ряда могут выпасть вследствие резкой смены условий. Каемки амфибола вокруг оливина будут свидетельствовать о таком неравновесном состоянии системы в процессе кристаллизации. При нормальном ходе кристаллизации магмы цветные минералы, выделившиеся в первые стадии процесса, полностью исчезают, сменяясь другими. Отсюда понятно, почему в порфировых вкрапленниках эффузивных пород цветной минерал обычно другой, чем тот, который присутствует в соответствующих интрузивных породах. В андезитах во вкрапленниках находятся обычно пироксены, а диоритах - роговая обманка.

Кристаллизация с образованием инконгруэнтно плавящегося соединения имеет место и для некоторых салических минералов. Так кристаллизуется система лейцит-кремнезем, в которой образуется ортоклаз, плавящийся инконгруэнтно. Температура кристаллизации лейцита - 1686єС, а температура преобразования его в ортоклаз - 1170єС. Этот процесс объясняет невозможность совместного нахождения фельдшпатоидов и кварца. Подобные реакции могут происходить и в многокомпонентной системе.

4.3 Кристаллизация по закону непрерывного реакционного взаимодействия (в системах с твердыми растворами)

Большинство минералов магматических пород представляют собой твердые растворы, то есть - совершенную изоморфную смесь двух или более компонентов. Плагиоклазы - изоморфная смесь альбита и анортита, щелочные полевые шпаты - калиевого полевого шпата и альбита, оливин - форстерита и фаялита и т.д. Поэтому кристаллизация расплавов, из которых образуются твердые растворы, имеет важное значение. В таких расплавах кристаллизация идет по закону непрерывного реакционного взаимодействия. Особенности кристаллизации по этому закону следующие: 1) в процессе кристаллизации состав выделившихся твердых кристаллов непрерывно изменяется; 2) температура определяет не только количественное соотношение выделившихся кристаллов и расплава, но и состав твердой фазы; 3) между выделившимися кристаллами и расплавом в течение всего процесса кристаллизации имеет место непрерывное реакционное взаимодействие, в результате которого изменяется состав расплава и твердой фазы; 4) прибавление к легкоплавкому компоненту более тугоплавкого может вызвать повышение температуры начала кристаллизации расплава смеси; 5) температура начала кристаллизации, состав первых кристаллов твердой фазы, а также температура конца кристаллизации, состав последних порций расплава и состав образовавшихся твердых кристаллов зависит исключительно от состава смеси.

Рассмотрим процесс кристаллизации в очень важной системе альбит-анортит (рис. 4.3). Температура плавления анортита - 1550єС. Прибавление альбита постепенно понижает температуру начала кристаллизации расплава смеси. Температура плавления альбита - 1100єС. Небольшое прибавление аноритта сразу же повышает температуру начала кристаллизации расплава смеси. Так расплав, содержащий 20% анортита и 80% альбита, начнет кристаллизоваться при температуре 1350єС. Верхняя кривая на рисунке характеризует температуру начала кристаллизации и состав расплава, а нижняя кривая - температуру конца кристаллизации и состав твердой фазы.

Из расплава, содержащего 40% альбита и 60% анортита при температуре 1475єС начнут выделяться кристаллы плагиоклаза, номер которого будет 87. При понижении температуры состав расплава будет изменяться в сторону обогащения альбитом, но и состав плагиоклаза тоже будет обогащаться альбитом. При температуре 1425єС кристаллов плагиоклаза и расплава будет поровну. Номер плагиоклаза будет 78, а расплав будет содержать 58% альбита и 42% анортита. При температуре 1350єС в равновесии будут уже кристаллы плагиоклаза №65 в количестве 85% и 15% расплава, содержащего всего 25% анортита. Количество расплава с понижением температуры непрерывно уменьшается и при 1325єС уменьшится до 0. Номер плагиоклаза станет 60. Состав последних порций расплава будет содержать 80% альбита и 20% анортита. Таким образом, кристаллизация данного расплава закончится при температуре 1325єС.

При нормальном ходе кристаллизации состав расплава и состав твердых кристаллов изменяется непрерывно. Это возможно только при достаточно медленном остывании, когда реакция доходит до конца. При кристаллизации магмы в глубинных условиях плагиоклаз, выделившийся в первые стадии процесса, успевает прореагировать с расплавом. Поэтому в интрузивных породах зональный плагиоклаз почти не встречается.

При образовании эффузивных пород кристаллизация идет быстро и не непрерывно. Поэтому плагиоклаз в этих породах имеет ряд особенностей. Во-первых, в порфировых вкрапленниках, представляющих сохранившиеся кристаллы первых стадий кристаллизации, обычно находится более основной плагиоклаз, чем тот, который составляет интрузивную породу соответствующего состава. Например, в риолитах встречается лабрадор, а гранитах - олигоклаз. Во-вторых, плагиоклаз во вкрапленниках эффузивных пород почти всегда зональный. Например, при кристаллизации расплава (рис. 4.4) температура от 1475єС до 1425єС понизится так быстро, что кристаллы не успеют прореагировать с расплавом. Тогда на них при дальнейшем понижении температуры начнет нарастать плагиоклаз другого состава. Поскольку в процессе кристаллизации может быть многократным перерыв в реакционном взаимодействии расплава с твердой фазой, то может образоваться несколько зон, то есть возникнет зональный плагиоклаз, который постоянно наблюдается в эффузивных породах. Границы между этими зонами могут быть резкими и расплывчатыми. Резкие границы, часто со следами оплавления, указывают на полное прекращение реакционного взаимодействия. Постепенные переходы между зонами указывают, что это взаимодействие было не полным, в результате того, что диффузия вещества из расплава к кристаллу шла быстрее, чем внутри кристалла.

Аналогичным образом кристаллизация может происходить и в системах, содержащих твердые растворы других составов (оливин, ромбические пироксены и т.д.). Кристаллизация в системе KAlSi3O8-NaAlSi3O8 в «сухом» состоянии будет проходить так же.

В системе KAlSi3O8-NaAlSi3O8 с летучими компонентами кристаллизация идет при более низких температурах, что может привести к распаду твердых растворов и образованию пертитов или антипертитов.

Особенности кристаллизации по закону непрерывного реакционного взаимодействия сохраняются и в более сложных системах.

4.4 Влияние летучих компонентов на кристаллизацию магмы

При кристаллизации расплавов, состоящих из одних силикатов можно не учитывать их летучесть и исключить влияние давления на ход кристаллизации. Однако, если в состав силикатного расплава входят такие летучие компоненты, как H2O, CO2, HCl, HF, H2 и т.п. пренебрегать газовой фазой нельзя, так как она участвует в процессе кристаллизации расплава.

Магма или лава всегда содержат летучие компоненты. На это указывают следующие факты: 1) извержение лав любого состава сопровождается вывыделением пара или газа в значительном количестве (на Аляске в вулканической области «Долина десяти тысяч дымов» ежегодно выделяется 1,25 млн. тонн HCL и до 200 тыс. тонн HF); 2) главной составной частью всех поствулканических выделений является вода; 3) все магматические породы содержат в своем составе воду. В граните ее 0,69%, в нефелиновом сиените - 1,38%, в габбро - 1,1%, в риолите - 1,54%, в базальте - 1,69%. В некоторых вулканических стеклах содержание воды достигает 10%. Но горных породах находится только небольшая часть воды, находящейся в магме. При кристаллизации большая часть летучих компонентов выделяется из магмы.

Сколько воды в магме точно неизвестно, но в 1938 г. экспериментами Горансона показано, что растворимость воды в гранитном расплаве ограничена. Гранитный расплав при давлении 100 атм (соответствует глубине 2 км) может растворить лишь 3,75% воды, а при давлении 4000 атм (соответствует глубине 15 км) - 9,25%. Во всяком случае нельзя считать, что магма может содержать неограниченное количество воды и других летучих компонентов.

Присутствие летучих компонентов в кристаллизующейся магме или лаве резко отражается на ее свойствах и влияет на ход кристаллизации.

1. Присутствие летучих компонентов резко снижает температуру начала кристаллизации. Установлено, что 1% растворенной в расплаве воды понижает температуру кристаллизации примерно на 50є, то есть при содержании 8-10% воды температура должна понизиться на 400-500 є.

2. Присутствие летучих компонентов резко понижает вязкость силикатного расплава, и, следовательно, способствует росту кристаллов.

В системах с ограниченной растворимостью летучего компонента в силикатном расплаве всегда имеет место резкий переход от расплава к раствору, даже при высоких давлениях. Отсюда следует наличие резкой границы между различными стадиями кристаллизации - магматической и пневматолитовой.

Главная особенность кристаллизации в системах с летучими компонентами - существование «ретроградного кипения», то есть выделения газа при одновременной кристаллизации. Оно начинается при понижении температуры. В результате ретроградного кипения магма превращается в горную породу, пропитанную газовым раствором, который находится в равновесии с породой и поэтому может вызвать перекристаллизацию ее подобно тому, как перекристаллизовывается осадок, остающийся в насыщенном растворе. В дальнейшем, если состав газового раствора изменяется, то он не будет находиться в равновесии с породой, и тогда магматические минералы начнут растворяться и замещаться вторичными минералами.

Таким образом, присутствие в магме воды и других минерализаторов обусловливает возникновение в конце кристаллизации газового раствора. Этот раствор в случае насыщенности его компонентами горной породы вызывает перекристаллизацию породы с образование грубозернистых структур. В другом случае, когда состав раствора отличается от состава горной породы, он вызывает отложение вторичных минералов с образованием различных структур замещения.

Общей особенностью кристаллизации магмы с участием летучих компонентов будет то, что этот процесс проходит в несколько стадий: 1) собственно магматическая стадия. Когда силикат выделяется из магмы, а газовая фаза еще не появляется; 2) «ретроградное кипение», когда из магмы выделяется и силикат и газовая фаза; 3) пневматолитовая стадия, когда силикат выделяется из газа; 4) стадия конденсации, когда появляются водные растворы и 5) гидротермальная стадия, когда силикат выделяется из водного раствора.

4.5 Закономерности парагенетических ассоциаций и последовательность выделения минералов

Подавляющее большинство магматических пород состоит из нескольких минеральных видов, они называются полиминеральными (гранит, гранодиорит, сиенит). Реже встречаются биминеральные (габбро, диорит) и мономинеральные (лабрадорит, пироксенит, оливинит) породы.

В состав полиминеральных пород могут входить многие минеральные виды, но в сочетании минералов, слагающих ту или иную магматическую породу, всегда есть закономерности, обусловленные физико-химическими законами, управляющими кристаллизацией магматического расплава. Парагенетические ассоциации в магматических породах, возникших в различные геологические эпохи, очень близки, а часто тождественны друг другу. Некоторые минеральные ассоциации невозможны в магматических породах. Для щелочных пород характерны щелочные минералы (например, нефелин, щелочные полевые шпаты, эгирин, щелочной амфибол в нефелиновых сиенитах). В известково-щелочных породах цветные минералы представлены оливином, пироксенами, роговой обманкой. Для кислых пород характерным является кварц. Для средних и некоторых основных - насыщенные кремнеземом силикаты и алюмосиликаты (ортоклаз, альбит, плагиоклазы, амфиболы, пироксены. Для основных и ультраосновных пород характерны недосыщенные минералы (оливин в известково-щелочных и фельдшпатоиды - в щелочных). Для определения минералогического состава горной породы необходимо четко знать не только оптические и морфологические свойства отдельных минералов, но и те парагенетические ассоциации, в которых встречаются породообразующие минералы. Определив два-три минерала необходимо уже ясно представлять себе, что может быть еще в данной породе. Ниже перечисленные главные закономерности парагенезиса минералов в магматических породах обоснованы общими представлениями об образовании этих пород.

1. Кварц не может быть вместе с фельдшпатоидами (нефелином и лейцитом).

2. Оливин не встречается с кварцем, калиевым полевым шпатом, кислым плагиоклазом и биотитом.

3. Щелочные пироксены и амфиболы находятся обычно с нефелином и не находятся с кварцем.

4. Зеленая роговая обманка встречается в кислых интрузивных породах (с кислым плагиоклазом и биотитом). В основных интрузивных породах (с основным плагиоклазом, пироксеном и оливином) находится обычно бурая роговая обманка.

5. Зеленая роговая обманка обычно сопровождается сфеном.

6. Мусковит не встречается вместе с пироксеном и роговой обманкой.

7. В нормальных) известково-щелочных) породах роговая обманка обрастает пироксен, в щелочных - щелочной амфибол может иметь каемку из щелочного пироксена (эгирина).

8. Базальтическая роговая обманка встречается только в кайнотипных эффузивных породах.

9. Лейцит встречается только в кайнотипных эффузивных породах. В интрузивных породах он переходит в псевдолейцит (псевдоморфозы из нефелина и калиевого полевого шпата).

10. Санидин находится только в эффузивных кайнотипных породах.

4.6 Реакционные ряды минералов

На основании исследования силикатных расплавов и минерального состава магматических пород Н. Боуэн изобразил последовательность выделения минералов из магмы в виде двух реакционных рядов: прерывно-реакционного ряда фемических минералов и непрерывно-реакционного ряда салических минералов. В прерывно-реакционном ряду выделение происходит в следующем порядке: оливин>ромбический пироксен>моноклинный пироксен>амфибол>биотит. В непрерывно-реакционном ряду выделение происходит в следующем порядке: основной плагиоклаз>средний плагиоклаз>кислый плагиоклаз>калиевый полевой шпат.

Каждому члену первого ряда соответствует определенный член второго ряда. Совместная кристаллизация минералов двух реакционных рядов протекает с образованием эвтектики и в этом случае последовательность выделения зависит от состава расплава.

Порядок выделения фемических минералов в породах нормального ряда также иногда нарушается в связи с тем, что каждый фемический минерал сам является членом изоморфного ряда, в котором магнезиальные компоненты являются более тугоплавкими, чем железистые. Поэтому в магмах, богатых железом может наблюдаться отступление от обычного порядка выделения. Например, в траппах содержится высокожелезистый гиперстен, который образовался позже моноклинного пироксена. В некоторых породах можно встретить железистый оливин, образовавшийся вместе с калиевым полевым шпатом, тогда как магнезиальный оливин кристаллизуется одновременно с основными плагиоклазами.

Кристаллизация начинается с наиболее высокотемпературных минералов: с оливина в левом ряду и анортита в правом. При понижении температуры ранее выделившиеся минералы реагируют с остаточной жидкостью, образуя нижестоящие минералы. Путем закалки было установлено, что кристаллизация расплава, соответствующего энстатиту, начинается с выделения кристаллов форстерита. При медленном понижении температуры он реагирует с остаточной жидкостью, обогащенной кремнеземом, и переходит в энстатит по схеме Mg2SiO4+SiO2>Mg2Si2O6. При быстром же застывании, или фракционировании, оливин может сохраниться в породе. При реакции оливина с расплавом возникает новый минерал - пироксен. Такое качественное изменение ранее выделившихся минералов при реакции их с остаточным расплавом характерно для левого ряда, который представляет собой так называемую прерывную реакционную серию. Каждый минерал прерывной серии, может сам являться членом непрерывной реакционной серии.

Магнезиальный оливин распространен в породах, недосыщенных кремнеземом, и ассоциирует с наиболее основными плагиоклазами. Железистые разновидности могут встречаться и в более богатых кремнеземом породах в ассоциации с кислым плагиоклазом.

Правый ряд представляет собой непрерывную серию плагиоклазов, характерной особенностью которых является их совершенный изоморфизм. Кристаллизация плагиоклаза всегда начинается с выделения члена изоморфного ряда, обогащенного анортитовой составляющей. При медленном остывании выделившийся плагиоклаз вступает в реакцию с остаточным расплавом и преобразуется во все более кислые разновидности. При всех этих процессах новых минеральных видов не возникает, то есть изменения постепенны, чем и обусловлено название «непрерывная реакционная серия». В конце кристаллизации оба ряда сливаются в один, заключающий конечные продукты кристаллизации магмы - калиевый полевой шпат и кварц.

Кристаллизация минералов прерывной и непрерывной серий может идти параллельно. На это указывает наличие эвтектики между минералами обоих рядов, наблюдаемых непосредственно в породах и установленных экспериментально.

Установлено, что кристаллизация по вышеприведенной схеме осуществляется при сопутствующем выделении рудных минералов, чему способствует постоянная и довольно значительная величина парциального давления кислорода. При низком и изменяющемся давлении кислорода кристаллизуются главным образом силикатные минералы, а в остаточном расплаве накапливаются оксиды железа. Эта схема осуществляется в платформенных «псевдостратифицированных» интрузиях.

Экспериментальное изучение силикатных систем, близких по составу к горным породам, дает возможность определить причину постоянства их состава. Так, например, общая лейкократовость гранитов по сравнению с габбро связана с положением соответствующих точек эвтектики и обогащением остаточных расплавов кремнеземом. Таким образом, реакционный принцип Боуэна справедлив для многих пород. Но в нем не учитываются железистость фемических минералов, определяющая ход кристаллизации, и роль давления, изменяющая фазовые взаимоотношения в системах.

Список литературы

1. Белоусова О.Н., Михина В.В. Общий курс петрографии. М.: Недра, 1972. 344 с.

2. Вильямс Х., Тернер Ф., Гилберт Ч. Петрография. Т. 1. М.: Мир, 1985. 301 с.

3. Вильямс Х., Тернер Ф., Гилберт Ч. Петрография. Т. 2. М.: Мир, 1985. 320 с.

4. Винклер Генезис метаморфических пород. М.: Недра, 1979. 328 с.

5. Даминова А.М. Петрография магматических горных пород. М.: Недра, 1967. 231 с.

6. Дмитриев С.Д. Основы петрографии. Иркутск: Изд-во Иркутского ун-та, 1986. 303 с.

7. Емельяненко П.Ф., Яковлева Е.Б. Петрография магматических и метаморфических пород. М.: МГУ, 1985. 248 с.

8. Заридзе Г.М. Петрография. М.: Недра, 1988. 389 с.

9. Малеев Е.Ф. Вулканиты. Справочник. М.: Недра, 1980. 240 с.

10. Саранчина Г.М., Шинкарев Н.Ф. Петрология магматических и метаморфических пород. Л.: Недра, 1973. 392 с.

11. Трусова И.Ф., Чернов В.И. Петрография магматических и метаморфических пород. М.: Недра, 1982. 289 с.

12. Хьюджес Ч. Петрология изверженных пород. М.: Недра, 1988. 319 с.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать