Картографические проекции

Картографические проекции

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Геолого-географический факультет

КОНТРОЛЬНАЯ РАБОТА

По курсу «Геоинформационные системы в геологии».

Картографические проекции.

Выполнила студентка

3 курса ГГФ

Королева Ю.И.

Томск 2008

Содержание

Введение

Понятие о картографических проекциях

Классификация проекций по виду меридианов и параллелей нормальной сетки

Существующие проблемы

Основные способы анализа при картографическом методе исследования

Совместное использование и переработка карт при картографическом методе исследования

Список литературы

Введение

Подобно многим отраслям знания научные истоки современной картографии и географии берут начало в античной Греции. Греки установили шарообразность Земли и вычислили ее размеры. Им принадлежат первые картографические проекции и введение в научный обиход меридианов и параллелей. Они являются создателями географических карт в. строго научном понимании этого термина.

Развитию в Греции географических знаний способствовало колонизационное движение. Оно привело к образованию греческих колоний на обширном пространстве от восточного побережья Пиренейского полуострова до северных берегов Черного моря. Эти колонии распространились почти на весь известный грекам мир. Дальнейшему накоплению географических знаний содействовали походы Александра Македонского. (334 - 323 гг. до н.э), сопровождавшиеся крупными географическими открытиями.

Понятие о картографических проекциях. Классификация проекций по характеру искажений

При переходе от физической поверхности Земли к ее отображению на плоскости (на карте) выполняют две операции: проектирование земной поверхности с ее сложным рельефом на поверхность земного эллипсоида, размеры которого установлены посредством геодезических и астрономических измерений, и изображение поверхности эллипсоида на плоскости посредством одной из картографических проекций.

Картографическая проекция - математически определенный способ отображения поверхности эллипсоида на плоскости устанавливает аналитическую зависимость (соответствие) между географическими координатами, точек земного эллипсоида и прямоугольными координатами тех же точек на плоскости. Эта зависимость может быть выражена двумя уравнениями вида:

х=f1(В,L), у=f2(В, L) (1),

называемыми уравнениями картографических проекций. Они позволяют вычислять прямоугольные координаты х, у изображаемой точки по географическим координатам В и L. .Число возможных функциональных зависимостей и, следовательно, проекций неограниченно. Необходимо лишь, чтобы каждая точка B, L эллипсоида изображалась на плоскости однозначно соответствующей точкой х, у и чтобы изображение было непрерывным.

Поверхность эллипсоида (или шара) нельзя развернуть на плоскости подобно поверхности конуса или цилиндра. Поэтому непрерывность и однозначность изображения достигаются как бы за счет неравномерного растяжения (или сжатия), т. е. деформации поверхности эллипсоида при совмещении ее с плоскостью. Отсюда следует, что масштаб плоского изображения не может быть постоянным. Для наглядного представления о величине и характере деформаций, свойственных определенной проекции, рассматривают, как изображаются на плоскости бесконечно малые окружности, взятые в разных точках на поверхности эллипсоида. В теории картографических проекций доказывается, что бесконечно малая окружность на поверхности эллипсоида в общем случае изображается на плоскости эллипсом, называемым эллипсом искажений. Это означает, что масштаб изображения зависит не только от положения точки, но может изменяться в данной точке с переменой направления. Различают главный масштаб, равный, масштабу модели земного эллипсоида, уменьшенного в заданном отношении для изображения на плоскости, и прочие масштабы, называемые частными. Частный масштаб определяется как отношение бесконечно малого отрезка d на карте (на плоскости) к соответствующему ему отрезку на поверхности эллипсоида. Обозначим величину этого отрезка в главном масштабе через dS. Отношение этих величин, обозначаемое через µ соответствующее отношению частного масштаба к главному, характеризует искажение длин

µ= (2)

В любой точке на поверхности эллипсоида имеются два взаимно перпендикулярных направления (называемых главными), которые в проекции также изображаются взаимно перпендикулярными линиями, совпадающими с большой и малой осями эллипса искажения (рис. 1). Очевидно, в эллипсе искажений наибольший масштаб совпадает с направлением большой оси эллипса, а наименьший - с направлением малой оси. Эти масштабы по главным направлениям, выраженные в отношении к главному масштабу, обозначают соответственно через а и б. Вообще говоря, главные направления могут элементы не совпадать с меридианами и параллелями (и их изображением в проекции). В таком случае масштабы по меридиану и параллели обозначают соответственно через m и n.

Рис. 1. Эллипс искажений и его элементы.

Непостоянство масштабов в данной точке по разным направлениям можно видеть на рис. 2.6, где длины изображаемых меридианов равны длинам меридианов эллипсоида (разумеется, с уменьшением до масштаба карты), а длины параллелей увеличиваются по мере удаления от экватора. На рисунке отрезки параллелей между двумя меридианами одинаковы на любой широте, тогда как в действительности они уменьшаются с приближением к полюсу до нуля. Таким образом, масштаб вдоль меридианов постоянен в любой точке карты, но вдоль параллелей он возрастает с увеличением широты. Это видно по эллипсам искажений, показанным на рис. 2. 6.

Наряду с искажениями длин различают искажения площадей и углов. За искажение площади в некоторой точке карты принимают отношение площади эллипса искажений dP/ к площади dP соответствующего бесконечно малого крута на эллипсоиде, обозначаемое через р:

(3)

Рис. 2. Картографические сетки в цилиндрических проекциях: а - равновеликой; б - равнопромежуточной; в - равноугольной.

Искажением угла называют разность между углом, образованным двумя линиями на эллипсоиде, и изображением этого угла на карте. Величина искажения углов в данной точке характеризуется наибольшим значением этой разности.

Проекций, совершенно лишенных искажений длин, не существует. Такие проекции сохраняли бы подобие и пропорциональность всех частей земной по-верхности, что может иметь место только на модели эллипсоида. Вместе с тем есть проекции, свободные от искажения углов или от искажений площадей.

Проекции, которые передают величину углов без искажения, называются равноугольными. Одна из них изображена на рис. 2.в.

В каждой точке равноугольной проекции масштаб одинаков на всех направлениях (эллипс искажении превращается в окружность) но меняется от точки к точке. Это видно по изменению размеров окружностей - эллипсов искажений.

Равновеликие проекции сохраняют площади (эллипсы искажений везде имеют одинаковую площадь) но сильно нарушают подобие фигур (вытянутость эллипсов искажений различна) (см. рис. 2.а).

Существует множество проекций, которые не являются ни равноугольными, ни равновеликими, - их называют произвольными.

Но нет и не может, быть проекции, которая была бы одновременно равноугольной и равновеликой. Вообще говоря, чем больше искажения углов, тем меньше искажения площадей и, наоборот, среди произвольных проекций выделяют равнопромежуточные, во всех точках которых масштаб по одному из главных направлении постоянен и равен главному масштабу (например, по меридианам или параллелям в проекциях, где они совпадают с главными направлениями) По своим свойствам произвольные проекции лежат между равноугольными и равновеликими. Характер искажений, присущий проекции (равноугольная, равновеликая, равнопромежуточная), отмечается в ее названии.

Классификация проекций по виду меридианов и параллелей нормальной сетки

В картографической практике распространена классификация проекции по виду вспомогательной геометрической поверхности, которая может быть использована при их построении. С этой точки зрения выделяют проекции: цилиндрические, когда вспомогательной поверхностью служит боковая поверхность цилиндра, касательного к эллипсоиду, или секущего эллипсоид; конические, когда вспомогательной плоскостью является боковая поверхность касательного или секущего конуса; азимутальные, когда вспомогательная поверхность - касательная или секущая плоскость.

Геометрическое построение названных проекций отличается большой на-глядностью. Для простоты рассуждения вместо эллипсоида воспользуемся шаром.

Заключим шар в цилиндр, касательный по экватору (рис. 3.а). Продолжим плоскости меридианов ПА, ПБ, ПВ, ...и примем пересечения этих плоскостей с боковой поверхностью цилиндра за изображение на ней меридианов. Если разрезать боковую поверхность цилиндра по образующей аАа1 и развернуть ее на плоскость, то меридианы изобразятся параллельными равноотстоящими прямыми линиями aAa1, 6Бб1, вВв1, ..., перпендикулярными экватору АБВ... Изображение параллелей может быть получено различными способами. Один из них - продолжение плоскостей параллелей до пересечения с поверхностью цилиндра, что даст в развертке второе семейство параллельных прямых линий, перпендикулярных меридианам. Полученная цилиндрическая проекция (рис. 3. 6) оказывается равновеликой, так как боковая поверхность S шарового пояса АЕДГ, равная 2лRh (где h - расстояние между плоскостями АГ и ЕД), соответствует площади изображения этого пояса в развертке. Главный масштаб сохраняется вдоль экватора; частные масштабы по параллели увеличиваются, а по меридианам уменьшаются по вере удаления от экватора.

Рис. 3. Построение картографической сетки в равновеликой цилиндрической проекции.

Другой способ определения положения параллелей основан на сохранении длин меридианов, т. е. на сохранении главного масштаба вдоль всех меридианов. В этом случае цилиндрическая проекция равнопромежуточная по меридианам (см. рис. 2. 6).

Для равноугольной цилиндрической проекции необходимо в любой точке постоянство масштаба по всем направлениям, что требует увеличения масштаба вдоль меридианов по мере удаления от экватора в соответствии с увеличением масштабов вдоль параллелей на соответствующих широтах (см. рис. 2. в).

Нередко вместо касательного цилиндра используют цилиндр, секущий шар по двум параллелям (рис. 4), вдоль которых при развертке сохраняется главный масштаб. В этом случае частные масштабы вдоль всех параллелей между параллелями сечения будут меньше, а на остальных параллелях - больше главного масштаба.

Для построения конической проекции заключим шар в конус, касающийся шара по параллели АБВГ (рис. 5, а). Аналогично предыдущему построению продолжим плоскости меридианов ПА, ПБ, ПВ, ... и примем их пересечения с боковой поверхностью конуса за изображение на ней меридианов. После развертки боковой поверхности конуса на плоскости (рис. 5, 6) меридианы изобразятся радиальными прямыми ТА, ТБ, ТВ, ..., исходящими из точки Т, причем углы между ними будут пропорциональны (но не равны) разностям долгот. Вдоль параллели касания АБВ (дуги окружности радиусом ТА) сохраняется главный масштаб. Положение других параллелей, изображающихся дугами концентрических окружностей, можно определить из разных условий, одно из которых - сохранение главного масштаба вдоль меридианов (АЕ=Ае) - приводит к конической равнопромежуточной проекции.

Для построения азимутальной проекции воспользуемся. плоскостью, каса-тельной к шару в точке полюса П (рис. 6). Пересечения плоскостей меридианов с касательной плоскостью дают изображение меридианов Па, Пб, Пв, ... в виде прямых, углы между которыми равны разностям долгот. Параллели, являющиеся концентрическими окружностями, могут быть определены различным путем, например, проведены радиусами, равными выпрямленным дугам меридианов от полюca до соответствующей параллели ПА=Па. Такая проекция равнопромежуточная по меридианам и сохраняет вдоль них главный масштаб. Например, эта проекция использована на эмблеме ООН (рис. 7).

Рис. 4. Цилиндр, секущий шар по двум параллелям.

Рис. 5. Построение сетки в равнопромежуточной конической проекции.

Рис. 6. Построение картографической сетки в азимутальной проекции.

Рис. 7. Эмблема ООН - равнопромежуточная азимутальная проекция.

Рис. 8. Картографическая сетка в одной из псевдоцилиндрических проекций (с изоколами углов).

Проекции, при построении которых оси цилиндра и конуса совмещались с полярной осью земного шара, а плоскость размещалась касательно в точке полюса, называются нормальными.

По виду нормальной сетки различают также проёкции: псевдоцилиндрические, у которых параллели прямые, параллельные друг другу, а меридианы - кривые, симметричные относительно среднего прямолинейного меридиана (рис. 8); псевдоконические, где параллели - дуги концентрических окружностей, а меридианы - кривые, симметричные относительно среднего прямолинейного меридиана (рис. 9); поликонические параллели, которых дуги эксцентрических окружностей с центрами на среднем прямолинейном меридиане, а меридианы - кривые, симметричные относительно среднего меридиана (рис. 10).

Рис. 9. Картографическая сетка в одной из псевдоконических проекций.

Рис. 10. Картографическая сетка в одной из поликонических проекций (с изоколами углов).

Наряду с нормальными сетками в картографии широко используют для цилиндрических и. азимутальных проекций другие ориентировки цилиндра и плоскости: поперечные, когда ось цилиндра лежит в плоскости экватора (рис. 11, а), а плоскость касается шара в одной из точек экватора; косые, когда ось цилиндра (рис. 11, б) образует с полярной осью острый угол, а плоскость касается шара в какой-либо точке между полюсом и экватором.

Рис. 11. Положение цилиндра при поперечной (а) и косой (б) цилиндрических проекциях.

Существующие проблемы. Основные линии использования катр. Понятие о картографическом методе исследования.

Развитие картографии всегда определялось потребностями жизни. Начиная со школьных лет карта знакома каждому человеку. Она - обыденное явление в нашей жизни. Но именно эта обьгденность нередко приводит к упрощенному взгляду на карту, ее недооценке, неполному использованию заложенных в ней возможностей. Важно не только иметь хорошую карту, но и уметь работать с ней, беря от нее все, что она может дать. Иначе карта будет в значительной мере оставаться вещью в себе. Поэтому разработка вопросов использования карт принадлежит к важнейшим проблемам картографии.

Обобщая многообразие линий практического и научного использования карт, можно выделить следующие основные направления: общее ознакомление с местностью по картам и вообще с изображенными на картах явлениями и объектами - с их пространственным размеще нием, сочетаниями, связями, свойствами и особенностями (чтение карты, иногда с элементарными измерениями);

1. ориентирование по картам, т. е: применение карт в качестве путеводителей на местности;

2. использование карт в качестве основы для инженерного проектирования и строительства; транспортного, гидротехнического, градостроительного, сельскохозяйственного и т. д.;

3. применение карт для районных планировок, разработки и осуществления планов развития народного хозяйства и культуры, а также в целях рационального природопользования;

4. применение карт для научного описания, анализа и познания явлений - картографический метод исследования.

В этом многообразии применения карт можно различать их три основные функции: коммуникативную - по хранению и передаче пространственной информации; оперативную, связанную с непосредственным решением различных практических задач (например, по навигации, управлению сельским хозяйством и т п), познавательную - для пространственных исследований явлений природы и общества и приобретения о них новых знаний.

Успех коммуникативной функции карт во многом зависит от избранных для них способов изображения и знаковых систем, а также опыта в чтении карт, приобретаемом при изучении топографии, картоведения, тематических разделов картографии и, конечно, в процессе практической деятельности. Методика оперативной работы с картами устанавливается специалистами, прибегающими к помощи карт, но картограф, готовящий эти карты, должен знать предъявляемые к ним требования. Методы использования карт как средства познания разрабатываются специалистами в соответствующих видах карт (геологами, геоботаниками, климатологами и т. д.) и картографами, работающими в тех же разделах тематической картографии (геологической, геоботанической и т. д.). Однако разработку общих вопросов картографического метода исследования правильнее отнести к интересам картографической науки (подобно тому, как разработка и совершенствование математического метода, широко используемого многими науками, принадлежат математикам).

Суть картографического метода состоит во включении в процесс исследования действительности промежуточного звена географической карты как модели изучаемых явлений. При этом карта выступает в двоякой роли: в качестве средства исследования и как его предмет в виде модели, заменяющей собой реальные явления, непосредственное изучение которых невозможно или затруднительно. Ярким примером подобных явлений могут быть географические закономерности глобального масштаба. Полученные таким образом (по картам) выводы и знания относятся к соответствующим объектам действительности.

При картографическом методе исследования важно не только использовать «статический потенциал» карты, т. е. сумму зафиксированных в ней знаний, но и мобилизовать ее «динамический потенциал» - возможность расширения знаний в результате индуктивных и дедуктивных умозаключений.

В основе картографического метода исследования лежит более широкое представление о картографическом методе познания. Последний можно пояснить схемой на рис. 12, на котором выделены четыре последовательные стадии картографирования и использования карт: 1) получение информации И1 в результате наблюдения некоторой части действительности Д1 - ее явлений и процессов; 2) обработка информации И1 и построение карты К - пространственной образно-знаковой модели исследуемой части действительности; 3) изучение (чтение) карты К для извлечения из нее информации И2 об отображенных на карте явлениях, если надо с дополнительной обработкой получаемых по карте данных; 4) использование полученной информации с привлечением имеющихся у исследователя, знаний и опыта для формирования представления Д2 о моделированной в виде карты части реального мира. Очень важно, что на 2-й, 3-й и 4-й стадиях происходит не только отключение излишней информации, но вместе с тем приобретение новых знаний в результате обработки информации, а также индуктивных и дедуктивных умозаключений.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать