Картографические проекции
p align="left">В самом деле, изготовление карты дает новый пространственный образ действительности; его анализ способами картографического метода исследования приносит дополнительную информацию об отображенных на карте явлениях. Наконец, интерпретация информации на основе ранее приобретенных знаний и опыта способствует дальнейшему обогащению представлений о размещении, состоянии, взаимосвязях и динамике исследуемых явлений.

Таким образом, составление и использование карты расширяет информацию сверх той, которая привлекалась к составлению карты.

Рис. 12. Схема картографического метода познания действительности.

Например, топограф может построить горизонтали по высотным отметкам, а геоморфолог использовать изображение в горизонталях для выводов о морфологии и генезисе рельефа. Именно возможность получения по картам новых знаний лежит в основе использовании карт как средства научного исследования, в частности при разработке гипотез, прогнозов, рекомендаций и т. д. Математическая теория информации, по которой И2 (информация на выходе из канала коммуникации) всегда меньше И1 (вводимой информации), неприменима для понимания коммуникативной функции карт.

Схема на рис. 12 иллюстрирует простейший путь картографического познания, при котором изготовление карты выполняется в результате непосредственного наблюдения (съемок) действительности. Однако создание большинства карт основывается не на прямом исследовании натуры, а на использовании уже имеющихся карт и других источников, обработка которых для получения производных карт имеет целью, не только отбор, отсеивание избыточной информации, но также получение новых знаний о картографируемых явлениях.

Таким образом, в картографическом методе познания действительности закономерно различать полевое и камеральное картографирование и исследование по готовым картам для получения новых знаний об исследуемой части действительности.

Внутреннее членение картографического метода познания действительности важно и в другом отношении: полевое и камеральное картографирование входят всецело в компетенцию профессиональных картографов и специалистов в соответствующих отраслях тематической картографии. Изучением же готовых карт как моделей действительности с целью познания этой действительности могут заниматься все потребители, для которых предназначаются конкретные карты. Именно это применение карт для получения новых знаний о действительности и рассматривается далее в качестве картографического метода исследования.

Основные способы анализа при картографическом методе исследования.

Применение картографического метода исследования основано на работе с картами как пространственными моделями действительности. Для изучения явлений по их изображениям на картах используются различные способы анализа, среди которых распространены: визуальный, картометрические исследования, графический, математико-статистический, математическое моделирование, приемы теории информации и др.

Визуальный анализ наиболее употребительный прием исследования по картам, основан на существе карт как образно-знаковых моделей, воспроизводящих в наглядной форме пространственные формы, отношения и структуру. Уже непосредственный взгляд на карту порождает при наличии опыта зрительный образ пространства изображенных явлений, например общее представление о местности по топографической карте. Внимательный просмотр карты позволяет далее (в зависимости от ее содержания) увидеть особенность форм и своеобразие пространственного рисунка явлений (например, округлые или лопастные очертания озер, древовидную или решетчатую конфигурацию гидрографической сети, пятнистость почв и т. п.); сопоставить величины показанных объектов (например, соотношение промышленных пунктов по стоимости валовой продукции); установить закономерности размещения (например, зональность растительного покрова), места сходства и границы контрастов; обнаружить пространственные взаимосвязи (например, между рельефом, почвами и растительностью или между природными условиями и сельским расселением); уяснить характер пространственных структур (например, больших городов); оценить особенности динамических ситуаций (например, синоптической обстановки) и т. д.

Такой анализ одинаково возможен для изучения планетарных закономерностей в размещении суши и океана, рельефа, климата, почв, растительности, животного мира, населения, хозяйства и т. д. или их региональных и даже местных особенностей. Визуальный анализ имеет в виду преимущественно качественную характеристику явлений, но часто сопровождается глазомерной оценкой длин, площадей, высот и т. П., а также их соотношений (при которой нельзя забывать об искажениях, вносимых картографическими проекциями при передаче больших пространств). Он всегда используется на первоначальной стадии исследования для общего ознакомления с изучаёмыми явлениями.

При общем развитии картографического метода исследования визуальный анализ расширяет область своего применения. Он распространяется на новые виды карт (например, металлогенические, служащие для прогноза полезных ископаемых) и особенно продуктивен в комплексном картографировании при совместном анализе сопряженных карт. Специально для визуального анализа предлагаются новые варианты уже известных способов изображения, облегчающие восприятие исследуемых явлений, изыскиваются приемы объективизации визуального анализа и т. д.

В качестве примера одного из приемов оформления, специально разработанного для визуального анализа, укажем на применение для картодиаграмм и картограмм кружков переменной величины, помещаемых в вершинах густой сетки квадратов. Такие изображения получают автоматически по статистическим данным, нанесенным на перфокарты, и печатаются в один цвет. Размер кружков и особенно затенение (доля черного), создаваемое сетью кружков, дают наглядное представление о различиях в интенсивности или абсолютной величине, что позволяет визуально районировать территорию. Цель таких карт - перевод статистических таблиц в наглядный, запоминающийся образ, облегчающий анализ, явлений их районирование.

Картометрические исследования заключаются в измерении и исчислении по картам количественных характеристик явлений с оценкой точности получаемых результатов. Определения координату расстояний, длин, высот, площадей, объемов, углов, уклонов и других топографических характеристик, теория и практические приемы этих определений рассматриваются в особом разделе картографии - картометрии. Диапазон картометрических работ необычайно широк. Они могут сводиться к измерениям отдельных объектов (например, длины какой-либо реки) или быть массовыми (включать все реки), иметь локальный характер (например, ограничиваться небольшим районом) или распространяться на значительные пространства (например, ставить целью определение площадей земельных ресурсов по их видам для всей страны) или даже иметь глобальное значение. Примером этому служат картометрические определения по советскому Атласу Антарктики (1966) , таких характеристик Антарктиды, как площадь материка, средняя высота ледяной и коренной поверхности, объем и средняя мощность ледникового покрова, позволившие прийти к новым представлениям о влиянии льдов Антарктиды на изменения уровня Мирового океана.

Графический анализ заключается в исследовании различных построений, выполняемых по географическим картам. Такими построениями могут быть профили, разрезы, блок-диаграммы и другие образно-знаковые модели, производные от карт, а также различные графики-диаграммы, розы направлений (например, тектонических разломов) и т. п. Их часто применяют для наглядного представления о размещении явлений в иных плоскостях, чем горизонтальная, а именно в вертикальное плоскости посредством профилей и разрезов, в наклонной плоскости в виде блок-диаграммы, сочетающей горизонтальные и вертикальные сечения, и т. п. Профили широко используют для изучения рельефа земной поверхности, геологического строения земной коры и т. д. Разрезы, показывающие вертикальную структуру компонентов географической оболочки, удобны для исследования их соотношений с рельефом земной поверхности, в частности с высотной поясностью. Совмещение профилей позволяет переходить к пространственному анализу, например для выявления поверхностей выравнивания.

Математическое моделирование состоит в создании пространственных математических моделей явлений или процессов по исходным данным, взятым с карт. Принципиальная возможность применения этого способа анализа карт определяется тем, что многие явления и процессы, изображаемые на картах, либо связаны между собой функциональными зависимостями, либо могут рассматриваться как функции пространства и времени. Распространенный прием моделирования заключается в составлении уравнений поверхностей - реальных (например, земного рельефа, поверхности погребенных пород определенного геологического возраста и т. п.) или абстрактных (годового слоя осадков, плотности населения, урожайности и др.) с целью последующего исследования этой модели для интерпретации и объяснения явлений. Этот способ анализа карт первоначально получил распространение в геофизике и климатологии при исследовании пространственных закономерностей и динамики гравитационных, магнитных, барических и температурных полей. Затем он нашел применение при анализе геоморфологических поверхностей выравнивания, плотности городского и сельского населения, сетей обслуживания и других природных и социально-экономических явлений.

При сложности моделируемых явлений, обязанных воздействию множества факторов (в том числе неизвестных), их «поверхности» заменяются приближенными (аппроксимирующими), выражаемыми в математической форме аппроксимирующими функциями, которые обычно представляют в виде разложений. Неизвестная функция

z=f(u, v), (4)

где u b v - координаты точек на карте в любой системе координат (х, у; ц, л и т.д.), например, записывается в виде степенного ряда

z=f(u, v) =A +Bu+ Сv+Du2+Еuv +Fv2+Gи3+Нu2v+...+Тumvm (5)

с неизвестными коэффициентами А, В, С, ... Для определения этих коэффициентов решается система уравнений (5), число которых равно или превышает число искомых коэффициентов (в последнем случае с привлечением способа наименьших квадратов). Значения z, u и v для составления отдельных уравнений берутся непосредственно с карты, например в вершинах квадратной сетки. Очевидно, многочлен первой степени, определяющий аппроксимирующую поверхность как плоскость, дает для сложной поверхности лишь самое грубое приближение. Аппроксимация уточняется с повышением степени многочлена. Несложные поверхности удовлетворительно описываются кубическими и даже квадратными уравнениями. Разложения, возможно, выполнить также посредством тригонометрических рядов Фурье или, что особенно удобно для практических целей, в виде суммы произведений ортогональных многочленов П. Л. Чебышева.

Математическое моделирование удобно применять для определения площадей и объемов, сопоставления поверхностей, например, при изучении корреляции явлений, и т. п.

Приемы математической теории информации находят применение для объёктивной оценки по картам пространственной однородности (или дифференциации) явлений и их взаимного соответствия. Основная функция теории информации - энтропия используется как показатель неоднородности картографического изображения (не однородности геоморфологического строения, почвенного или растительного покрова, структуры угодий, расселения и т. п.) и, следовательно, как показатель пространственных различий явлений. При этом энтропия может подсчитываться не только для явлений, характеризованных на карте в числовой форме, но также для лишенных количественных характеристик, например для растительных сообществ, ареалов животных и т. п.

Проведенный выше раздельный обзор основных способов анализа, используемых в картографическом методе исследования, позволяет яснее видеть пути его применения. Но в практике обычно совместное применение различных способов. Например, предварительный визуальный анализ полезен для выбора рациональной методики картометрических работ, результаты которых могут быть далее обобщены. В графических построениях, в частности в виде гипсографических кривых, и т. п. Комплексирование различных способов не только обогащает методику работы, но и расширяет возможности картографического метода.

Некоторые способы анализа (визуальный, графический, картометрический) имеют длительную историю, но математические способы, требующие сплошь и рядом обширных вычислений, оказались реальными лишь после внедрения электронно-вычислительных машин в практику картографического метода. Новая вычислительная техника преимущественно применяется для автоматической обработки данных снятых с карты «ручным» способом, например для решения системы уравнений, полученных в результате ручных измерений по карте.

Вместе с тем для успешного использования любого способа, особенно математического, необходимы анализ, истолкование и контроль получаемых результатов, их содержательная (географическая) интерпретация. Взаимосвязанное применение способов облегчает решение этой задачи.

Современный этап в автоматизации картографического метода исследования состоит в разработке устройств, позволяющих автоматизировать получение по картам исходных данных для передачи их в электронно-вычислительные машины, либо автоматических устройств, полностью решающих конкретные задачи картографического метода, например по автоматическому определению площадей по картам.

Совместное использование и переработка карт при картографическом методе исследования

При картографическом методе исследования возможны различные варианты использования карт: непосредственный анализ отдельны карт; анализ сопряженных карт разной тематики; сопоставление раз - современных карт; сравнительное изучение карт-аналогов; анализ, связанный с преобразованием картографического изображения; разложение картографического изображения на составляющие и т.д.

Особенности и возможности использования карт при картографическом методе во многом зависят от характера самих карт и целей исследования. Взгляд на карты как на пространственные модели геосистем проясняет влияние типа карт. Отраслевая карта, содержание которой ограничено одним из элементов геосистемы или даже его отдельным признаком, допускает лишь изучение пространственного размещения этого элемента (или признака), если необходимо с его количественными характеристиками (величины, интенсивности и т. п.). Комплексная карта, объединяющая ряд элементов геосистемы, открывает путь к исследованию их взаимосвязей и функционирования и, следовательно, сильно расширяет возможные пределы исследования.

Но полную силу комплексное картографирование приобретает в сериях карт, что определяет большую эффективность. совместного анализа сопряженных карт геосистем.

Наиболее доступен и распространен непосредственный анализ отдельных карт способам. При отсутствии специальной подготовки, технических средств или достаточного времени иногда ограничиваются визуальным изучением карты. Оно одинаково применимо для малых и больших пространств и, несмотря на свою простоту, может приводить опытного исследователя к многим интересующим его выводам. Например, топографические карты хорошо выявляют структуру гидрографической сети, типы рельефа, характер сельскохозяйственного расселения его связь с природными условиями и т. д. В глобальном масштабе благодаря визуальному анализу были открыты и изучены явления широтной зональности, а также выдвинуты предположения о меридиональных и секторальных закономерностях, обнаруживаемых на тектонических, морфоструктурных, климатических, почвенных и геоботанических картах земного шара. Привлечение других способов анализа обычно расширяет спектр выводов и, главное, усиливает их доказательность. Эти возможности возрастают еще более при совместном использовании ряда карт, а также при целенаправленном преобразовании их содержания и способов изображения.

Совместный анализ карт разной тематики широко используется для изучения пространственных связей и зависимостей, например между рельефом, почвами и растительностью. Он позволяет устанавливать пространственное соответствие явлений и тем самым дает конкретным наукам и практике основу для дальнейших исследований по выявлению причинно-следственных связей. Очень продуктивен совместный анализ карт заведомо взаимосвязанных явлений, например осадков, поверхностного стока и испаряемости, позволяющий приходить к заключениям о водном балансе территории, ее увлажнении, пополнении подземных вод и т. д. Важно, что карты представляют хорошие возможности для изучения взаимосвязей, непосредственно в натуре не наблюдаемых, например климатических условий и заболеваемости населения. Массу иллюстраций возможностей совместного анализа карт дает Атлас океанов (1974-1980). Например, сопоставление карт физических свойств водных масс Мирового океана с биогеографическими картами позволяет установить зависимость локализации растительных и животных организмов от определенных температурных и гидрохимических условий.

Простейший способ сопоставления карт - визуальный. Более точный результат дает совмещение карт, например при помощи оптического проектора. Чтобы облегчить совмещение, сопряженные карты можно печатать на прозрачных пластиках, накладываемых друг на друга. Подобные приемы открывают непосредственно полное или частичное совпадение явлений, их обратные соотношения, систематические смещения и т. п. Количественные характеристики взаимосвязей, в частности, взаимозависимостей, не являющихся строго функциональными (их называют корреляциями), можно находить приемами математической статистики по выборкам с сопряженных карт.

Совместный анализ разновременных карт, показывающих изменения в пространственном положении и состоянии явлений, открывает путь к изучению динамики и развития исследуемых геосистем или их элементов. Это могут быть карты, отображающие действительность на момент их изготовления (например, топографические карты по съемкам разных лет), либо карты, составленные по разновременным источникам, например по переписям населения, проводимым каждое десятилетие. Интервалы разновременных карт устанавливаются сообразно характеру исследуемых явлений: при анализе синоптических процессов по картам интервалы ограничиваются часами, а при изучении вековых движений земной коры возрастают до десятков лет или даже до столетий. При сопоставлении разновременных‚ карт выявляются: изменения в пространственном положении явлений, например перемещения береговой линии, ареалов расселения животных и т. п.; изменения в состоянии явлений, например, рост населенных пунктов, повышение класса дорог и т. п.; замещения одних явлений другими (распашка целинных земель, смена породного состава лесов и т. п.); ритмы, сезонных и других периодических явлений; общие тенденции развития явлений. При этом возможно не только измерять по картам абсолютные величины пространственных изменений, но также определять их направления, средние скорости и некоторые другие характеристики.

Сравнительное изучение карт-аналогов, т. е. карт, изображающих территории, сходные в каких-либо свойствах или отношениях, позволяет переносить с некоторой долей вероятности знания, полученные для доступных и хорошо изученных пространств на менее доступные и изученные. Например, выявление по картам таежной зоны СССР и Канады сходных ландшафтов допускает в качестве гипотезы экстраполяцию закономерностей, найденных для ландшафтов СССР, на аналогичные ландшафты Канады. Подобная методика заслуживает внимания при прогнозировании природных явлений в труднодоступных районах земного шара или при проектировании мер борьбы с неблагоприятными условиями окружающей среды - вечной мерзлотой, сейсмичностью и т. д.

Изучение карт аналогов распространяется теперь за пределы земного шара, в частности получило признание в планетологии. Картографический анализ морфометрических показателей и статистических характеристик земных и лунных кольцевых структур, ориентировки систем линеаментов, общего распределения материков, океанов, морей обнаруживает сходства в строении этих двух тел. При всем различии геологического развития Земли и Луны морфологическое подобие форм их рельефа может служить основанием для прогноза внутреннего строения, состава и генезиса лунных образований.

Преобразование картографического изображения заключается в получении производных карт, специально предназначенных и удобных для анализа с конкретными целями. Этот способ использования карт требует от исполнителей специальной картографической подготовки и, вообще говоря, связан с изготовлением новых карт. Но в соответствии с пониманием картографического метода исследования как составной части картографического метода познания мы ограничиваем рассматриваемый способ переработкой готовых карт для конкретного анализа. Например, составление по гипсометрической карте производных морфометрических карт (крутизны склонов, глубины и густоты расчленения), когда они предназначены для включения в научно-справочный комплексный атлас и могут быть использованы для решения многих задач, относится к картографированию вообще. Но сходные преобразования гипсометрической карты для целей конкретного исследования принадлежат картографическому методу, например, для прогнозирования процессов эрозии, когда карта крутизны склонов непосредственно выделяет участки, где смыв практически отсутствует, где распашка опасна, и т. д.

В общем, преобразование карт при картографическом методе исследования мы рассматриваем как уточнение, дополнение, или переработку исходной модели ради введения в нее новых элементов, показателей и характеристик, лучше удовлетворяющих интересы конкретного исследования. Процесс такого преобразования может оказаться многоступенчатым. Так, карту крутизны склонов можно подвергнуть новым переработкам, чтобы получить карты экспозиции и солнечной освещенности склонов.

Задачи преобразования различны:

1. упрощение карт посредством сохранения на них только тех элементов или показателей, которые полезны для конкретного анализа, например сохранение на карте крутизны склонов только тех градаций крутизны, которые . интересны для сельского хозяйства (выделяют участки, где смыв практически отсутствует, где распашка опасна и т. д.) либо в дорожном строительстве и т. п.; переход к обобщенным изображениям, обнажающим главные черты объектов (например, замена реальных горизонталей схематизированными, проведенными касательно к первым - на линиях основных водоразделов, в результате чего на карте выступают крупные первичные формы рельефа и устраняются наложенные формы эрозионного и денудационного расчленения);

2. введение в карты новых показателей, лучше удовлетворяющих интересы проводимого исследования, например замена абсолютных величин относительными показателями, облегчающими сопоставление явлений разной размерности;

3. замена одних способов .изображения другими, более удобным для сравнительного анализа (например, переход к изолиниям на картах стока, упрощающим сопоставление этих карт с картами осадков и испарения и последующее суждение о водном балансе).

При этом возможно заменять способы, предназначенные для непрерывного (континуального) отображения пространства, дискретными и наоборот. Распространенный пример дискретной передачи непрерывной поверхности изображение рельефа морского дна отметками глубин на навигационных картах. Операция перехода состоит в определении и фиксации показателей непрерывного явления - количественных или качественных (например, грунтов морского дна) - в некоторой сети точек, которая может быть регулярной или избирательной, намечаемой с учетом особенностей размещения явления, в частности его максимумов и минимумов.

Особый вид преобразования состоит в разложении картографического изображения на составляющие, показывающие раздёльно компоненты (факторы) сложного явления - основные, имеющие повсеместное распространёние (или воздействие), и локальные ограниченного действия. При этом суммарная характеристика явления или воздействующих на него факторов представляется в виде исходной анализируемой поверхности, разлагаёмой в процессе исследования на две: основную, или фоновую, отображающую основной компонент, и остаточную, передающую второстепенные компоненты (локальные факторы). Например, возможно представить реальный рельеф земной поверхности (в горизонталях) в виде двух поверхностей; фоновой и остаточной, обусловленных соответственно тектоническими и экзогенными процессами. Предложены различные способы построения фоновых поверхностей, в частности посредством их математического моделирования, при котором фоновая поверхность выражается аппроксимирующим многочленом. Остаточная поверхность строится как разность реальной и фоновой поверхностей. Преобразование посредством разложения применимо и для абстрактных, в том числе «статистических» поверхностей.

Список литературы

1. Салищев К.А. Картоведение, 2-е изд. М., Изд-во МГУ, 1982 г. С ил., 408 с.

2. Королев Ю.К. Общая геоинформатика. Ч.1. Теоретическая геоинформатика. - М., 1998.-118 с.

3. Лебедева О.А. Картографические проекции. - Новосибирск, 2000.-35 с.

4. Цветков В.Я. геоинформационные системы и технологии. -М., 1998.-287 с.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать