Выдающаяся роль Леонарда Эйлера в развитии алгебры, геометрии и теории чисел
b>

Основная теорема алгебры была высказана впервые П. Роте, А. Жираром и Р. Декартом в первой половине XVII в., правда все предложенные ими формулировки сильно отличались от современной: Жирар утверждал, что уравнение степени n должно иметь ровно п корней, действительных или воображаемых, причем смысл последнего термина не уточнялся. Декарт лишь высказал лишь предложение: алгебраическое уравнение может иметь столько корней, какова его степень.

В 40-х годах XVIII в. Маклорен и Эйлер дали основной теореме формулировку, эквивалентную современной: всякое уравнение с действительными коэффициентами можно разложить в произведение множителей 1-й и 2-й степени с действительными коэффициентами, иными словами, уравнение степени п имеет п корней, действительных и комплексных.

Первое доказательство основной теоремы предложил в 1746 г. Даламбер. Хотя ученые XVIII в. и не видели недостатков в этом доказательстве, но оно казалось им слишком аналитичным. Математики стремились обосновать основную теорему чисто алгебраически, исходя из самой теории уравнений. В настоящее время известно, что этого сделать нельзя, если не использовать в том или ином виде свойств непрерывности, однако можно свести применение этих свойств к минимуму. Первое такое «максимально алгебраическое» доказательство принадлежит Леонарду Эйлеру.

Работа Эйлера «Исследования о воображаемых корнях уравнений» («Recherches sur les racines imaginares des equations»), в которой приводится доказательство основной теоремы алгебры, была опубликована в «Мемуарах» Берлинской академии наук за 1749 г. в 1751 г. Латинский вариант этой статьи (Thoremata de radicibus aequationum imaginariis) был представлен Эйлером Берлинской академии наук еще 10 ноября 1746 г. Таким образом, Эйлер проводил свои исследования почти одновременно с Даламбером. Интересно, что при этом оба ученых исходили из совершенно различных принципов.

Доказательство Даламбера достаточно хорошо известно и не имеет точек соприкосновения с работами Эйлера. Доказательство же Эйлера в противоположность доказательству Даламбера в настоящее время почти забыто. Между тем в основе его лежит именно та идея, которая потом повторялась и варьировалась при всех так называемых алгебраических доказательствах основной теоремы. Последующие доказательства могли быть короче или длиннее, более или менее остроумными, могли быть проведены вполне строго или иметь существенные пробелы, однако основная идея оставалась неизменной.

Кроме того, в процессе доказательства Эйлер впервые применил методы исследования уравнений, которые позднее были развиты Лагранжем и стали основными в его работах, посвященных вопросу решения уравнений в радикалах, а затем вошли в качестве неотъемлемой составной части в теорию Галуа.

Современное «алгебраическое доказательство» основной теоремы можно разделить на три части:

1) топологическое предложение, состоящее в том, что каждое алгебраическое уравнение f(x)=0 нечетной степени с действительными коэффициентами имеет действительный корень;

2) конструкция поля разложения многочлена f(x)=0, т.е. такого поля, над которым f(x)=0, распадается на линейные множители;

3) редукция, сводящая нахождение корня уравнения f(x)=0 степени m=2kr, где r нечетное, к нахождению корней уравнения F(x)=0 степени 2k+1r1, где r1 нечетное.

Все эти части встречаются уже в доказательстве Эйлера: топологическое предложение он формулирует и считает очевидным. Затем он предполагает, что каждый многочлен с действительными коэффициентами можно представить в виде

fm(x)=(x-б1)(x-б2)…(x-бm),

где б1,…,бm - некоторые символы или воображаемые количества, о которых нам заранее ничего не известно, кроме того, что с ними можно проводить обычные действия арифметики по тем же правилам, что и для обычных чисел (т.е. применять к ним закон коммутативности умножения и сложения, дистрибутивность умножения по отношению к сложению и т.д.). Оперируя с этими символами б1,…,бm , Эйлер провел редукцию для уравнений степени 4, 8, 16 и наметил ее для уравнений т=2k. Последнюю редукцию безупречно строго провел Лагранж, опираясь на теоремы о симметрических и подобных функциях, в статье «О видах мнимых корней уравнений». В результате было доказано, что все бi являются либо действительными, либо комплексными числами.

Если рассмотреть основную теорему алгебры как одно из элементарных предложений теории функции комплексного переменного, то вряд ли эта теорема может представить интерес. Но, с другой стороны такие великие математики, как Эйлер, Лагранж, Лаплас и Гаусс, занимались ею, причем Гаусс предложил для нее четыре различных доказательства. Алгебраические доказательства теоремы тесно связаны с общей теорией уравнений. Уже в доказательствах Эйлера и Лагранжа выявилась связь алгебраических доказательств с теорией симметрических функций и подобных функций корней уравнения. [12]

§2.2 Числовые приближенные методы решения уравнений

п.2.2.1. Метод рекуррентных рядов

Другим приближенным методом, который покоился на совсем иной основе, чем способ Ньютона, и не нуждался в определении границ корней, был метод рекуррентных рядов, сообщенный Даниилом Бернулли в Comm. Ac. Petr., 1728 (1732). Возникновение этого метода было, впрочем, связано с замечаниями Ньютона о применении к решению уравнений сумм степеней корней. Способ Бернулли заключался в следующем. Пусть требуется решить уравнение

и пусть выбраны п произвольных чисел Р1, Р2, Р3,..., Рп. Если теперь определить Рп+1, Рп+2, ... рекуррентным законом

(т=1, 2, 3,...), то отношение с возрастанием т приближается к наибольшему по абсолютной величине корню уравнения. Даниил Бернулли высказал эту теорему без доказательства. [12] Эйлер в 17-й главе «Введения» (1748) тщательно разобрал этот метод и привел отсутствовавший вывод.

Так как всякий рекуррентный ряд получается из развертывания рациональной дроби, то пусть эта дробь будет равна

откуда получается рекуррентный ряд

А+Вz+Cz2+Dz3+Ez4+Fz5+ и т.д.

его коэффициенты А, В, С, D, и т.д. определятся так:

A=a, B=A+b, C=B+A+c,

D=C+B+A+d, E=D+C+B+A+e и т.д.

Общий же член, т.е. коэффициент степени zn, найдется из разложения данной дроби на простые дроби, знаменатели коих являются множителями знаменателя

1-z-z2-z3- и т.д.

Вид общего члена зависит, главным образом, от свойств простых множителей знаменателя, будут ли они действительными или мнимыми, а так же от того, будут ли они отличны друг от друга или два и более будут одинаковыми. Для последовательного рассмотрения этих различных случаев положим вначале, что все простые множители знаменателя действительны и не равны между собой. Пусть все простые множители знаменателя будут

(1-pz)(1-qz)(1-rz)(1-sz) и т.д.

и тогда данная дробь разложится на простые дроби.

Когда они найдены, то общий член рекуррентного ряда будет равен

примем его равным Pzn; значит, P будет коэффициентом степени zn; у следующих же членов пусть коэффициенты будут Q, R, и т.д., так что рекуррентный ряд будет

А+Bz+Cz2+Dz3+…+Pzn+Qzn+1+Rzn+2+ и т.д.

Теперь положим, что п представляет чрезвычайно большое число, т.е. что рекуррентный ряд продолжен весьма далеко; так как степени неравных чисел тем более отличаются друг от друга, чем они больше, тем между степенями и т.д. будет такое различие, что степень, соответствующая наибольшему из чисел р, q, r и т.д. между собой не равны, то пусть p будет наибольшим среди них. Тогда, если п будет числом бесконечно большим, будем иметь

если же п будет числом не бесконечно, а лишь очень большим, то только приближенно будет Подобным образом будет и, следовательно.

Отсюда ясно, что если рекуррентный ряд продолжить достаточно далеко, то коэффициент любого члена при делении на предыдущий дает приближенное значение наибольшей буквы р.

Итак, если у данной дроби

в знаменателе все сомножители простые, действительные и не равные между собой, то из получающегося отсюда рекуррентного ряда можно будет узнать один простой множитель, именно, 1-pz, в котором буква р имеет самое большое значение. При этом коэффициенты числителя не играют роли, и, каковы бы ни были, для наибольше буквы р найдется одно и то же верное значение. Верное же значение р обнаружится лишь тогда, когда ряд будет продолжен до бесконечности; когда получены уже многие его члены, то значение p найдется тем ближе, чем больше число членов и чем более буква р превосходит остальные q, r, s и т.д.; при этом безразлично, будет ли эта буква р сопровождаться знаком плюс или минус, так как степени ее возрастают одинаково.

Теперь в достаточной степени выясняется, каким образом это исследование может быть применено к нахождению корней, какого либо алгебраического уравнения. Зная множители знаменателя

1-z-z2-z3-z4- и т.д.,

легко указать корни уравнения

1-z-z2-z3-z4- и т.д. =0,

так, что если множитель будет 1-pz, то один корень этого уравнения будет z=. Так как из рекуррентного ряда найдется наибольшее число р, то тем самым получится наибольший корень уравнения

1-z-z2-z3- и т.д. =0,

Или если положить z=, чтобы получилось уравнение

xm-xm-1-xm-2-xm-3- и т.д. =0,

то посредством того же метода получится наибольший корень этого уравнения х=р.

Итак, пусть дано уравнение

xm-xm-1-xm-2-xm-3- и т.д. =0,

у которого все корни действительны и не равны между собой; наибольший из этих корней найдется следующим образом. Составим из коэффициентов этого уравнения дробь

и отсюда образуем рекуррентный ряд, беря числитель произвольно или, что то же, принимая начальные члены произвольными; пусть этот ряд есть

А+Bz+Cz2+Dz3+…+Pzn+Qzn+1+ и т.д.

тогда дробь даст значение наибольшего корня х данного уравнения тем ближе, чем больше число п. [6]

п.2.2.2. Еще два оригинальных метода.

Кроме метода Бернулли, который сохранился до нашего времени в форме, сообщенной ему Лагранжем, XVIII столетие принесло еще два оригинальных метода И. Г. Ламберта. Оба они были изложены в статье «Различные замечания о чистой математике» (Observationes variae in mathesin puram в Acta Helvetica за 1758). Если в уравнении

сделать подстановку x = k+y и пренебречь всеми степенями у, кроме первой, то получится, что

Когда k представляет собой какое-либо число, эта формула, согласно Ламберту, дает приближенное значение для корня, ближайшего к k. Второй метод заключался в применении ряда, получившего название ламбертова, к трехчленным уравнениям вида

ахх + bx = d или, что то же, хт + рх = q, по способу последовательных приближений. Ряд этот

сходится при (т - l)m-1рm> mmqm-1, что и было без доказательства указано его автором.

Эйлер, которому Ламберт по приезде в Берлин в 1764 сообщил о своей работе, тотчас же сделал из нее отправной пункт новых изысканий. Полуиндуктивным способом он нашел ряды для решения уравнений более чем с тремя и даже с любым числом членов; впрочем, о сходимости этих рядов он по обыкновению не заботился [Nov. Comm. Ac. Petr., 1770 (1771)]. К этим замечательным рядам он затем возвращался в позднейших статьях [Nov. Comm. Ac. Petr., 1775 (1776), Act: Ac. Petr., 1779 (ч. II, 1783), а также Nov. Act. Petr., 1786 (1789) и 1794 (1801)], причем добавил недостававшее еще доказательство их справедливости. Он дал также ряды, с помощью которых можно выражать не только корни уравнений, но и их степени [Nov. Act. Petr., 1786 (1789) и 1794 (1801)]. [12]

§2.3. Общая теория уравнений

Долгое время великие математики пытались решить уравнения выше четвертой степени. Их неудачи не смогли поколебать убеждения математиков XVIII столетия о разрешимости всех алгебраических уравнений в обыкновенных иррациональностях. Великий Леонард Эйлер так же держался этого взгляда.

Comm. Ac. Petrop. за 1732/33 (1738) содержали первую статью Эйлера о решении уравнений. Он указывал, что решение уравнений второй, третьей и четвертой степеней приводится к уравнениям соответственно первой, второй и третьей степени; эти последние уравнения он называл «aequatio resolvens» («разрешающее уравнение»), откуда и возникло слово «резольвента». Эйлеру удалось образовать резольвенту уравнения третьей степени

х3=ах+b

с помощью подстановки

а уравнения четвертой степени

x4=ax2+bx+c

с помощью подстановок

или х=

(благодаря чему он нашел новое решение уравнения четвертой степени). На этом основании он счел правомерным заключить, что, по всей вероятности, и для уравнения

должна существовать резольвента (п-1)-й степени, определить которую следует посредством подстановки х=, Но уже при n=5 попытка, естественно, окончилась неудачей. Эйлер сумел достигнуть цели только в частном случае возвратных уравнений, на которые впервые натолкнулся Муавр в «Аналитических этюдах» (1730) и которые получили свое название от самого Эйлера. Спустя почти 30 лет [в Nov. Comm. Ac. Petr., 1762/63 (1764)] Эйлер вновь обратился к этому методу. Эта работа была уже представлена в 1759. Он улучшил подстановку, придав ей вид

,

и полагал, что нашел правильную форму, которая позволит отыскать решение общей задачи. Он оказался при этом в согласии с Варингом, применившим в «Аналитических этюдах» (Miscellanea analytica, 1762) такую же форму радикалов. Но именно от этой формы отправился Абель в своем доказательстве невозможности решения уравнения пятой степени в радикалах. Эйлер использовал также преобразование Чирнгауза, несколько видоизменив его. Полагая, что с его помощью можно найти решение любого уравнения, он приложил его к решению уравнений третьей и четвертой степеней.[11]

Глава III. Выдающиеся достижения Леонарда Эйлера в области геометрии и тригонометрии

Не будет преувеличением сказать, что за последние годы в области «Эйлероведения» сделано больше, чем за весь XIX век. Геометрическим работам Эйлера отведено пять томов первой серии Opera omnia. По объему это составляет примерно 20% всех его математических работ.

§3.1. Развитие аналитической геометрии, начиная с систематического исследования высших порядков

В рассматриваемое время координатный метод употребляли преимущественно в дифференциально-геометрических исследованиях, или же, если подчеркивали значение метода Декарта, применяли его к высшим алгебраическим кривым. Последним занялся, в частности, де-Гюа-де-Мальв в небольшой книге «Применения анализа Декарта», которая была богаче новыми идеями, чем аналитическими выводами. Эти исследования более высокого порядка могли быть с таким же успехом приложены к коническим сечениям, которые иногда и привлекались в качестве примеров. Так, например, де-Гюа впервые дал для конического сечения

nyy+rxy+mxx+ay+bx+cc=0

(т, п, r обозначают числа, но а, b, с -- отрезки) уравнение, определяющее координаты центра, в виде

Cледует упомянуть, что для де-Гюа было вполне привычным представление о кривой, распадающейся на несколько других, т. е. кривой, уравнение которой в левой части разлагается на ряд множителей. Он даже называл уравнение у3= х3 уравнением трех прямых, две из которых мнимые.

Сочинение Г. Крамера «Введение в анализ алгебраических кривых», опиравшееся во многих отношениях на работу де-Гюа и изданное десятью годами позднее, также ограничивалось высшими алгебраическими кривыми. Тем временем уже появился второй том «Введения в анализ» (1748) Эйлера, поднявший на существенно более высокую ступень и аналитическую теорию конических сечений. Эйлер целиком еще держался декартова понятия о координатах, между тем как Крамер, на сочинение которого книга Эйлера повлиять уже не могла, впервые равноправно определил две координаты и последовательно ввел ось ординат. Правда, в преобразованиях координат у Крамера ось ординат все еще играла несколько беспомощную роль. Со времен Витта преобразования координат употреблялись всеми математиками и нередко принимали даже довольно сложные формы, ибо тогда часто переходили от одной косоугольной системы к другой, с новым началом и отличным координатным углом, не пользуясь при этом тригонометрическими функциями. Впервые последними воспользовался для этой цели Эйлер во «Введении в анализ». Он еще часто обозначал синус или косинус угла посредством какой-либо специальной буквы. Но у него имелись уже и такие формулы преобразования прямоугольной системы:

t = x cos * q - у sin * q, u = x sin * q + y cos * q.

Во второй главе II тома «Введения в анализ», посвященной преобразованию координат, Эйлер коротко останавливается на вопросе о прямой. Сначала он приводит ее уравнение в виде u+ t+b = 0, но затем, желая определить положение прямой, записывает его в виде x+ y - a= 0. Он не разбирает различные возможные комбинации знаков и и упоминает лишь случаи = 0, = 0 и = а = 0, не касаясь, однако, случая ==0. Все эти возможности были впервые разобраны, по крайней мере, в форме беглых замечаний, в книге Риккати-Саладини.

В пятой главе II тома «Введения в анализ» речь идет об общих свойствах всех конических сечений, т. е. свойствах, которые можно вывести из общего уравнения второй степени. Хотя вначале Эйлер определенно заявляет, что из одного принципа вывести все свойства конических сечений нельзя и что одни получаются из способа образования этих линий на конусе, а другие из приемов их описания, но здесь он желает опираться только на уравнение. Последнее он записывает в виде

причем координатный угол в зависимости от обстоятельств берется то прямым, то отличным от прямого. Действуя вполне в духе Ньютона и Стерлинга, Эйлер в первую очередь выводит из этого уравнения на основании теоремы о сумме и произведении корней обычные свойства диаметров, секущих и касательных. К числу извлекаемых им следствий принадлежит также теорема, что коническое сечение можно рассматривать как геометрическое место к четырем прямым. Далее он определяет уравнение диаметра, делящего пополам хорды, параллельные ординатам, вначале в прямоугольной системе, а затем для того же конического сечения в системе с прежними осью абсцисс и началом, но с косоугольно расположенными ординатами. Точка пересечения обоих диаметров дает центр конического сечения, координаты которого не зависят от угла, образуемого направлением ординат с осью абсцисс. Затем Эйлер устанавливает отнесенные к «сопряженным диаметрам» уравнения

yy=+ x+ x x и yy= - x x.

За этим следуют совершенно новые и оригинальные вещи. Именно, исходя из последнего уравнения (чертит он здесь лишь эллипсы), Эйлер посредством вычислений определяет другую пару сопряженных диаметров, для одного из которых дан угол с осью абсцисс. Эйлер вычисляет тангенс угла второго диаметра с осью абсцисс, тангенс угла между обоими новыми сопряженными диаметрами и, наконец, длины последних. В этих нелегких выкладках Эйлер применяет для обозначения функций известных углов, как специальные буквы, так и их современные символы. В качестве следствий здесь получаются теоремы о постоянстве параллелограммов и сумм квадратов, построенных на сопряженных диаметрах, а также теорема о произведении отрезков касательных, лежащих между двумя фиксированными параллельными касательными.

Теперь Эйлеру нужно лишь выставить требование взаимной перпендикулярности новой пары диаметров, чтобы получить тем самым положение и длины главных осей. При этом он подчеркивает, что решение здесь существует всегда. В присоединенном к этому тому «Приложении о поверхностях» Эйлер действительно преобразовал уравнение

аасс = auu+ 2 tu+ t t

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать