Выдающаяся роль Леонарда Эйлера в развитии алгебры, геометрии и теории чисел
p align="left">в прямоугольной системе координат к главным осям. Аналитическая геометрия конических сечений впервые была поставлена на собственные ноги.

В конце рассматриваемой главы определяются действительные фокусы. Эйлер определяет их, отыскивая на большой оси точки, для которых радиусы-векторы точек кривых могут быть рационально выражены через их координаты.

Следующая, шестая глава трактовала о классификации линий второго порядка. Эйлер различает здесь кривые только в зависимости от значения коэффициента в уравнении

уу = + х + х х.

Затем он берет для эллипса уравнение относительно центра

и, в частности, выводит из него фокальные свойства эллипса и его касательной. Далее, он вводит новые величины

(полупараметр) и d=a -- (aa-bb)

(расстояние фокуса от вершины). Тогда уравнение эллипса относительно вершины принимает вид

Теперь Эйлер переходит от эллипса к параболе, полагая 2d = c, благодаря чему а и b становятся бесконечно большими. Насколько возможно, свойства параболы он выводит, исходя из понимания ее как бесконечно растянутого эллипса. Вслед за тем он переходит к уравнению гиперболы

у у = + x x

и устанавливает, что сопряженная ось в этом случае мнимая. Однако, чтобы сохранить сходство с уравнением эллипса, он полагает мнимую ось равной , в результате чего уравнение гиперболы приобретает вид

О свойствах гиперболы он умозаключает, представляя себе, что в соответствующих случаях для эллипса bb заменено через -bb. Установив для угла, образуемого касательной с большой осью, скажем, угла , общее уравнение

tang =

Эйлер находит асимптоты, полагая х= (т.е. ), что дает для тангенса угла асимптоты с осью значение . При выводе различных свойств асимптот он определенно отмечает, что они сохраняют силу, когда, например, секущая прямая пересекает не одну ветвь гиперболы, а обе. Само собою, разумеется, Эйлеру было известно также определение асимптот с помощью разложения на множители совокупности старших членов уравнения кривой. Однако этот прием он применил лишь в последующих главах, вообще посвященных бесконечным ветвям высших кривых. В главе VII Эйлер делает замечание, что если больше, чем 4, то общее уравнение

y y+ x y+ x x + y + x +=0

представляет собой гиперболу. Вообще же у Эйлера отсутствовали еще общие критерии классификации кривых по их коэффициентам. [11]

§3. 2. Поверхности второго и высших порядков

«Поверхности» как таковые, кроме плоскости и шара, древние математики почти не рассматривали. Правда, Архимед присоединил к известным тогда обыкновенным коническим и цилиндрическим поверхностям еще «сфероиды» и «коноиды», но он смотрел на них как на «тела», имея целью определение их объемов.

Уравнение поверхности в пространственных координатах вывел впервые Лагир.

В трактате о кратчайших линиях на поверхностях [Comm. Ac. Petr., 1728 (1732)] Эйлер рассмотрел три частных рода поверхностей, а именно, цилиндрические и конические поверхности и поверхности вращения. Он привел для этих поверхностей, отчасти лишь словесно, уравнения, которые мы можем записать в виде

z=(y), z=(x2+ y2)

Вскоре затем Герман в одной статье в Comm. Ac. Petr., 1732/33 (1738) частью аналитически, частью геометрически исследовал несколько поверхностей, данных своими уравнениями. Прежде всего, он рассмотрел плоскость

azx+by+cx-e2=0,

затем «параболически-цилиндрический клин»

z2 - ax - by=0

конус

z2 - xy=0

«коноиды»

z2 - ax - by=0

и

a z2 + b y z+ c y2 - e x z + f x2+ g z - h x = 0

и, далее, «круглые тела» с общим уравнением

u2 - x2 - y2 =0

где

u2=a2 - и u2=с2 -

(в последнем случае при а=b получается шар). В заключение Герман рассмотрел тело, уравнение которого привел в виде (b-z)=bx. Это уравнение аналитически, хотя и не применяя настоящих пространственных координат, исследовал в приложении к «Алгебре» (1685) еще Валлис, назвавший его Cono-Cuneus («конусо-клин»). Уже приведенные названия фигур свидетельствуют о том, что Герман видел в них в основном еще тела, чему содействовало также ограничение лишь положительными значениями z, а по большей части и положительными х, у. Для параболического конуса Герман определил касательную плоскость, не приводя ее уравнения, для коноидов -- их высшие точки, для конусов (в том числе для тех, которые оказываются частными случаями коноидов) -- круговые сечения и для «конусо-клина», рассматриваемого лишь в первом октанте, -- различные сечения, характеризующие форму этих тел.

Эйлер присоединил ко второму тому своего «Введения в анализ» (1748) довольно обширное «Приложение о поверхностях». Прежде всего, он заявил, что о поверхности можно судить по расстояниям ее точек от произвольно выбранной плоскости. В этой плоскости он затем взял «ось» с «начальной точкой абсцисс» и ввел, таким образом, прямоугольную систему координат. Эйлер определенно указал, что х, у, z следует придавать всевозможные положительные и отрицательные значения, отметил возможность взаимной перемены трех координат и образуемых их осями плоскостей, весьма подробно разобрал вопрос о симметрии координат в восьми октантах. Тем не менее, на чертежах во внимание всегда принимался лишь первый октант, форма поверхностей вообще не анализировалась и понимание пространственных фигур как тел еще не было преодолено. Далее, Эйлер показал, что уравнение с двумя координатами представляет цилиндрическую или призматическую поверхность, а однородное уравнение выражает конус (или пирамиду). После этого он привел весьма общий класс поверхностей, включающий конусы, цилиндры и поверхности вращения (однородное уравнение относительно Z, х, у, где Z есть функция z), затем другой класс поверхностей, сечения которых (именно в первом октанте), перпендикулярные к оси, представляют собой треугольники (сюда попадает, между прочим, «конусо-клин» Валлиса), потом класс поверхностей, параллельные сечения которых аффинные между собой, и еще два вида линейчатых поверхностей, -- все это без примеров. Затем Эйлер показал, как можно вообще представить сечение поверхности произвольной плоскостью в самой этой плоскости уравнением с двумя координатами t, v; он применил это потом к точному исследованию сечений цилиндра, конуса и шара, причем за основу взял прямые эллиптические цилиндр и конус, включающие рассматривавшиеся раньше косые круговые конус и цилиндр.

За этим следовала специальная глава, в которой выводились уравнения, преобразующие одну прямоугольную систему пространственных координат в другую. Так как Эйлер ввел шесть определяющих преобразование величин, то его формулы оказались несимметричными. В той же связи Эйлер ввел здесь понятие «порядка» поверхности и сформулировал теорему, что порядок плоской кривой, возникающей при сечении поверхности, не выше порядка самой поверхности; попутно он отметил также возможность распадения линии пересечения на несколько других. В качестве примера Эйлер привел уравнение плоскости

б x + в y + г z = a,

для которой, между прочим, определил углы с координатными плоскостями.

После всего этого Эйлер впервые предпринял исследование общего уравнения второй степени с тремя координатами. В первую очередь он рассмотрел совокупность высших членов уравнения, как характеризующую «асимптотический конус», и сообщил условия его действительности, а также его вырождения. Затем, не произведя, впрочем, всех должных выкладок, он правдоподобным образом показывает, что общее уравнение может быть приведено к виду

Арр + Вqq + Crr + К = 0.

Из этого уравнения Эйлер получает эллипсоид («elliptoeides»), однополостный и двухполостный гиперболоиды («superficies еlliptico-hyperbolica» и «superficies hyperbolico-nyperbolica»). Эллиптический и гиперболический параболоиды («superficies elliptico-parabolica» и «superficies parabolico-hyperbolica») выражены здесь уравнением

Арр ± Bqq = ar.

Эйлер упоминает еще параболический цилиндр

Арр = аq

и делает несколько беглых замечаний о том, как можно определить род поверхности по какому-нибудь данному уравнению. Рассуждения Эйлера, особенно в части, касающейся доказательств, были еще весьма несовершенны, но предложенная им классификация легла в основу позднейших исследований.

Еще в начале «Приложения» Эйлер заявил, что не намерен рассматривать подобно Клеро кривые двоякой кривизны отдельно, ибо они тесно связаны с природой поверхностей. Свое «Приложение» он поэтому закончил главой о пересечении двух поверхностей, вообще говоря, представляющем пространственную кривую. Он показал, как при исключении одной из переменных возникают уравнения проекций этой кривой на координатные плоскости, и применил это также к пересечению поверхности с плоскостью. Для примера он привел пересечение плоскости с шаром, причем нашел условия их соприкосновения. Далее, он определил для шара сначала конус вращения, касающийся его вдоль некоторой окружности, а потом эллиптический конус, касающийся шара в двух точках. Относительно последнего случая он заметил, что хотя кривая пересечения имеет лишь две действительные точки, но ее проекция на некоторую координатную плоскость действительна. При определении касательной плоскости к поверхности Эйлер пользовался лишь приемом Клеро, не устанавливая общего уравнения этой плоскости, которое потребовало бы «анализа бесконечного», между тем как «Введение в анализ» должно было лишь «открыть к нему путь». В самом конце Эйлер разъяснил, как найти две поверхности, пересекающиеся по данной плоской кривой.[11]

§3.3. Второй том «введения в анализ бесконечных»

В том же году, что и «Алгебра» Маклорена, вышла книга Эйлера «Введение в анализ бесконечных величин».

рис. 2. Титульный лист книги.

Рис. 3. Оглавление

Второй том «Введения» был отведен исключительно геометрии, именно -- аналитической геометрии. Эйлер весьма ясно и искусно резюмировал здесь все достижения своего времени в этой области, не внеся, впрочем, в само учение о кривых каких-либо важных новых результатов. Теорию прямолинейных и криволинейных асимптот он разработал без алгебраического треугольника, исследуя лишь разложение на линейные множители выражений, составленных из членов n-й, (п - 1)-й и т. д. степени уравнения кривой. Очевидно, что ему не были знакомы ни работы де-Гюа, ни работы Стирлинга, а идеи первого о равноправности бесконечно удаленных и конечных элементов были ему совершенно чужды. Он распределил кривые третьего порядка на 16 родов в соответствии с их поведением в бесконечности. При этом он справедливо отметил, что с точки зрения своего принципа классификации Ньютон должен был бы установить значительно больше видов, чем 72, и подчеркнул, что его собственная классификация является окончательной. Для каждого рода он привел его нормальное уравнение и номера соответствующих ему видов Ньютона. Для кривых четвертого порядка он получил таким же путем 146 родов. То немногое, что Эйлер приводит о диаметральных и других свойствах кривых 3-го порядка, он вывел из общего уравнения. Еще большей краткостью отличались его рассуждения об определении формы кривой по уравнению. Столь же бегло Эйлер коснулся вопроса о касательных в простых и кратных точках. Если кратная точка имеет координаты р, q, то в случае двойной точки он приводит уравнение кривой в форме

Р (х - p)2 + Q (х -- р) (y - g) + P(y -- q)2 = 0,

а затем дает соответствующие формы уравнений для тройной и четырехкратной точек.

Вслед за тем Эйлер несколько подробнее и оригинально изложил учение о кривизне линий. Прежде всего он определил для кривой аппроксимирующую ее в окрестности данной точки параболу и нашел для последней круг кривизны. Для уравнения

0 = At + Bu + Ctt + Dtu + Euu + Ft3 + Gttu + Htuu + и т. д.

Эйлер получает, что длина радиуса кривизны в начале координат равна

Анализируя это выражение, он пришел к точкам перегиба первого и высшего порядков, для чего привлекались еще члены третьей степени. Аналогично рассматривались лежащие в начале координат точки заострения первого и высших порядков. В качестве общей формы, заключающей все эти возможности, он взял аппроксимирующие кривые с уравнениями бrm = sn. В плане подобных рассмотрений точки заострения второго рода, разумеется, не встречались, однако с помощью удачно выбранного примера Эйлер доказал, что такие точки действительно существуют. Ближайшие две главы книги Эйлера трактовали о кривых, имеющих диаметры, и об определении кривых, ординаты которых обладают данными свойствами. В последнем случае Эйлер имел в виду следующее. Пусть, например, уравнение кривой дано в виде

yy - Py + Q = 0,

где Р и Q -- функции х, и ординаты, соответствующие одному и тому же значению х, суть РМ и PN. Тогда можно принять, например, что

PMn + PNn=an

(п может быть также отрицательным или дробным). Аналогично обстоит дело с кривыми, уравнение которых имеет вид

y3 - Py2 + Qy - R = 0.

В следующей главе Эйлер определял кривые по другим условиям. Однако и эти условия носили весьма ограничительный характер и относились только к свойствам отрезков, отсекаемых на лучах, выходящих из начала координат. Вначале Эйлер устанавливает общие уравнения алгебраических кривых, имеющих с таким лучом лишь одну, две или три точки пересечения. Попутно Эйлер употребляет полярные координаты, полагая луч СМ = z, а угол его наклона к оси Ох обозначая через ц, так что

х = z cos ц, у = z sin ц.

Затем он берет условия типа CM ± CN = const., = const., = const, и некоторые другие и исследует соответствующие классы кривых. Сходным образом поступает он и в случае трех точек пересечения.

Специальную главу Эйлер посвятил подобию и аффинности кривых. Он повторил сделанное уже ранее указание, что однородное относительно х и у уравнение представляет только систему («aliquot») прямых, пересекающихся в одной точке. Если же уравнение оказывается однородным при введении «параметра» и, то все представляемые им кривые являются подобными. Эйлер приводит для примера уравнение

у3 -- 2 х3 + a y y -- a a x + 2 a a y = 0

и доказывает, что если координаты точек другой кривой системы обозначить X и Y, то всегда будет

и .

«Аффинными» Эйлер назвал кривые, координаты которых связаны уравнениями

и .

Это определение совпадает с современным понятием аффинности. Затем Эйлер привел еще несколько примеров на составление систем кривых с одним переменным параметром.

Интересно, что в свою книгу Эйлер включил также главу о трансцендентных кривых. Он кратко рассмотрел тригонометрические кривые, логарифмическую кривую, циклоиду, эпициклоиды и гипоциклоиды, линию х у = у х и спирали. Для спиралей он вновь применил полярные координаты, обозначая полярный угол, измеряемый в радианах, через s, а полярный радиус-вектор, как и раньше, через z. Ни здесь, ни где-либо в другом месте этого тома дифференциальное исчисление не применялось. [11]

Надо обратить внимание, что дидактические достоинства второго тома «Введения» велики. Изложение отличается отчетливостью и доступностью, систематизация материала вполне естественная. Для того времени это «научный трактат» и в то же время хороший учебник. Впервые аналитическая геометрия была столь полно и последовательно изложена. Отныне ей было обеспечено самостоятельное место среди других математических дисциплин. [6]

§3.4. Специальные плоские кривые

Еще долго до того, как возникла общая теория конических сечений, был изобретен ряд отдельных кривых для построения античных задач.

«Треугольные кривые» возникли в одной оптической задаче, поставленной Эйлером [Act. Ac. Petr., 1778, II (1781). Эвольвенты этих кривых он называл «круговидными» (Orbiformen).

Кривым с несколькими осями симметрии посвятил XV главу второго тома своего «Введения» (1748) Эйлер.

Кривыми, длины дуг которых представляют собой некоторые определенные функции, несколько раз занимались Эйлер [Nov. Act. Petr., 1789 (представлено 1776), Mem. Ac. St.-Pet, 1830 (представлено 1781)] и Н. Фус (Nov. Act. Petr., 1805).

На «псевдоциклоиды» (термин Э. Чезаро, 1896), т. е. эпициклоиды с мнимым образующим кругом, натолкнулся еще Эйлер в поисках кривых, подобных своим эволютам различных порядков [Comm. Ac. Petr., 1740 (1750) и Nov. Act. Petr., 1783 (1787)].

«Упругую кривую», т. е. линию, форму которой принимает закрепленный на одном конце упругий стержень, Галилей как это указывает Як. Бернулли (Acta Erud., 1694), также считал параболой. Геометрическую характеристику этой кривой дал Я. Бернулли (Acta Erud., 1694 и 1695). Особенно подробно занялся ею Эйлер в приложении 1 к «Методу нахождения кривых линий» (1744, ср. стр. 202) и в Acta. Ac. Petr., 1782, II (1786).[11]

§3.5. Геодезические линии

Первые дифференциально-геометрические исследования относились к кратчайшим линиям на поверхностях. В самом деле, именно при изучении геодезических линий Иоганн Бернулли в 1697, по-видимому, впервые, применил исчисление бесконечно малых. Изложение своего метода он составил лишь в 1728, а опубликовал его в 1742 (Opera, т. IV; ср. стр. 201--202). Как известно из одного его письма к Эйлеру от 18 апреля 1729, дифференциальное уравнение, полученное Бернулли, имело вид

где Т обозначает подкасательную и ds2 = dx2 + dy2. В одной схолии сам Бернулли показал, что это дифференциальное уравнение легко преобразовать к форме, которая содержится в опубликованной тем временем Эйлером статье в Соmm. Ac. Petr., 1728 (1732). Бернулли опирался на теорему, полученную, впрочем, из механических соображений, что соприкасающаяся плоскость геодезической линии («planum osculans») должна быть перпендикулярна к касательной плоскости поверхности (письмо к Лейбницу, август 1698).

Бернулли добавил, что в случае поверхностей вращения задачу можно также решить, требуя, чтобы при развертывании узкой полосы поверхности, содержащей геодезическую линию, на плоскость эта линия переходила в прямую. Для конуса это замечание было сделано Як. Бернулли уже в Acta Erud., 1698.

Эйлер решил задачу в указанной статье, исходя из высказанного еще в 1697 Як. Бернулли положения, что минимальное свойство всей кривой должно быть присуще и ее мельчайшим частям, а также применяя теорию максимумов и минимумов.

У Эйлера дифференциальное уравнение геодезической линии имело вид

,

где функции Р, Q берутся из дифференциального уравнения поверхности

Pdx = Qdy + Rdt. Эйлер затем подробнее разобрал частные случаи общего цилиндра и конуса, а также поверхностей вращения. Для этих случаев он привел дифференциальное уравнение к уравнению первого порядка, а в заключение указал некоторые обобщения. Эйлер не забыл отметить, что при развертывании поверхностей цилиндра или конуса на плоскость их геодезические линии должны перейти в прямые.

Лейбниц также весьма интересовался этим вопросом, но он лишь указал (в переписке с И. Бернулли, 1698) способ, который мог бы также привести к составлению дифференциального уравнения. Прием, указываемый Лейбницем, совпадал с тем, которым воспользовался для решения задачи молодой Клеро в Mem. Ac. Paris, 1733 (1735).

Существенный шаг вперед сделал здесь опять-таки Эйлер в IV главе второго тома «Механики» (1736), где доказал, что точка, движущаяся по поверхности без ускорения, всегда описывает геодезическую линию. При этом у него получилось механическое доказательство теоремы, из которой исходил Бернулли (аналитическое доказательство дал впервые Лагранж в 1806).

Более простой вопрос о геодезических кривых на поверхностях вращения геометрически разрешил, как было отмечено, Як. Бернулли (Acta Erud., 1698). Клеро затем доказал, что для точек такой линии произведение радиуса параллельного круга на синус ее угла с меридианом постоянно [Mem. Ac. Paris, 1733 (1735)]; с помощью разложений в ряды он приближенно определил геодезические линии эллипсоида вращения, мало отличающегося от шара [там же, 1739 (1740)].

Эйлер, побуждаемый Иоганном Бернулли, обобщил задачу о геодезических линиях на кривые, соприкасающаяся плоскость которых образует с касательной плоскостью к поверхности угол, отличный от прямого (письмо к Бернулли от 11 июля 1730, опубликовано в 1903 г.). Эту задачу решил и Бернулли (Opera, IV, 1742). [11]

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать