Управление банковскими ресурсами на основе теории нечетких множеств
p align="left">Свойства обычных отношений и операции над ними.

Отношением R на множестве Х называется подмножество декартова произведения . В соответствии с этим определением задать отношение на множестве Х означает указать все пары элементов, такие, что связаны отношением R. Для обозначения того, что элементы x и y связаны отношением R, мы будем пользоваться двумя эквивалентными записями: или . [3]

Простым примером отношения может служить отношение "не меньше" на интервале [0,1]. На рис. 3.6. это отношение (т.е. все пары , связанные отношением) представлено заштрихованной областью. Отношению "равно" в этом примере соответствует показанная на рис. диагональ единичного квадрата. [4]

Рис. 3.6. Отношение "не меньше" на интервале [0,1]

Если множество X, на котором задано отношение R, конечно, то это отношение удобно описывать матрицей , представляющей собой характеристическую функцию множества . Элементы этой матрицы определяются следующим образом:

Отношение В включает в себя отношение А, если для соответствующих множеств выполнено .

Если А - отношение на множестве Х, то обратным к А отношением называется отношение А-1 на Х такое, что тогда и только тогда, когда . Если - матрицы этих отношений (в случае конечного множества Х), то элементы этих матриц связаны соотношением , т.е. матрица А-1 получается путем транспонирования матрицы А.

Дополнением отношения R на множестве Х называется множество, являющееся дополнением множества R в декартовом произведении . Матрица дополнения отношения R получается из матрицы отношения R путем замены нулевых элементов единичными, а единичных - нулевыми.

Произведение (композиция) отношений А и В на множестве Х определяется следующим образом: тогда и только тогда, когда найдется элемент , для которого выполнены отношения . Элементы матриц отношений , А и В связаны соотношением

,

т.е. матрица отношения С равна максиминному произведению матриц отношений А и В (в максимином произведении матриц вместо арифметических операций сложения и умножения используются операции max и min соответственно).

Отношение R на множестве X называется рефлексивным, если для любого . В матрице рефлексивного отношения все элементы главной диагонали равны единице. Примером рефлексивного отношения может служить отношение R ( ? ) на множестве чисел.

Отношение R на Х называется антирефлексивным, если из того, что , следует . Все элементы главной диагонали матрицы такого отношения равны нулю.

Отношение R на Х называется симметричным, если из того, что , следует . Матрица симметричного отношения - симметричная, т.е. .

Отношение R на Х называется антисимметричным, если из того, что и , следует . Матрица такого отношения обладает следующим свойством: если , то .

Отношение R на Х называется транзитивным, если из того, что и , следует . Транзитивность отношения R эквивалентна условию или .

Транзитивным замыканием отношения R на Х называется отношение, полученное из R следующим образом:

Транзитивное замыкание можно неформально определить как "наименьшее" транзитивное отношение на Х, включающее в себя отношение R. Для любого отношения R его транзитивное замыкание равно пересечению всех транзитивных отношений, содержащих R. R - транзитивное отношение тогда и только тогда, когда оно совпадает со своим транзитивным замыканием, т.е. когда . [3]

Определение нечеткого отношения.

Определение 3.10.

Нечетким отношением R на множестве Х называется нечеткое подмножество декартова произведения , характеризующееся функцией принадлежности . Значение этой функции понимается как субъективная мера или степень выполнения отношения .

Обычное отношение можно рассматривать как частный случай нечеткого, функция принадлежности которого принимает лишь значения 0 или 1.

Приведем пример, иллюстрирующий принципиальное различие обычных и нечетких отношений. Для этого лучше всего рассмотреть два "похожих" отношения на одном и том же интервале [0, 1], причем одно из этих отношений обычное (четкое), а другое нечеткое. В качестве обычного отношения возьмем отношение R ( ? ), а в качестве нечеткого отношения возьмем отношение (>>) ("много больше"). [3]

На приведенном рис. 3.7, а пары (x,y) из интервала [0, 1], связанные отношением R (т.е. x, y - такие, что ), образуют множество, показанное штриховкой. Диагональ единичного квадрата является границей этого множества: все пары (x, y), находящиеся за этой диагональю (вне штрихованной области), не связаны данным отношением.

В случае же отношения ситуация сложнее из-за того, что понятие "много больше" является нечетким. Пытаясь построить соответствующее отношению подмножество единичного квадрата, мы обнаружим, что в этом квадрате есть пары (x, y), которые мы определенно относим к подмножеству (т. е. считаем пары (x, y) связанными отношением ), и пары, которые мы считаем определенно не входящими в это подмножество (т. е. считаем не связанными отношением R). Так, например, можно считать, что определено много больше , т.е. .

С другой стороны, ясно, что для можно столь же определенно записать .

Однако подобной определенности нет в отношении, скажем, пары с парой ,

то можно сказать, что отношение (>>) в большей степени приложимо к паре , чем к паре . [3]

Таким образом, существует некоторая промежуточная область перехода от пар, для которых отношение (>>) определенно выполняется, к парам, для которых это отношение определенно не выполняется, причем парам (х, у) из этой области можно приписать степени выполнения данного отношения или субъективные оценки, зависящие от смысла, вкладываемого в понятие "много больше" в контексте той или иной ситуации.

Рис. 3.7. Пары (x,y) из интервала [0, 1], связанные отношением R

На рис. 3.7, б отсутствие четкой границы множества R показано изменением плотности штриховки. [3]

Если множество X, на котором задано нечеткое отношение R, конечно, то функция принадлежности этого отношения представляет собой квадратную матрицу. По смыслу эта матрицы аналогична матрице обычного отношения, но элементами ее могут быть не только числа 0 или 1, но и произвольные числа из интервала [0, 1]. Если элемент этой матрицы равен , то это означает, что степень выполнения отношения равна .

Носителем нечеткого отношения R на множестве Х называется подмножество декартова произведения вида

.

Носитель нечеткого отношения можно понимать как обычное отношение на множестве X, связывающее все пары (х, у), для которых степень выполнения данного нечеткого отношения не равна нулю. В случае конечного множества X матрицу носителя можно получить, заменив в матрице исходного нечеткого отношения единицами все ненулевые элементы. [3]

При анализе задач принятия решений с нечеткими отношениями удобно пользоваться множествами уровня нечеткого отношения. Поскольку нечеткое отношение определяется как нечеткое множество, то и его множества уровня определяются как

.

Нетрудно видеть, что множество уровня нечеткого отношения R на X представляет собой обычное отношение на X, связывающее все пары (х, у), для которых степень выполнения отношения R не меньше . Матрицу множества уровня можно получить, заменив в матрице нечеткого отношения R единицами все элементы, не меньшие числа , и нулями - все остальные элементы. [4]

Пример.

Пусть матрица нечеткого отношения R на множестве имеет вид

Тогда матрица обычного отношения, являющегося множеством уровня 0,5 этого нечеткого отношения, выглядит так:

.

Операции над нечеткими отношениями.

Перейдем теперь к рассмотрению операций над нечеткими отношениями. Некоторые из этих операций являются аналогами соответствующих операций для обычных отношений, однако, как и в случае нечетких множеств, существуют операции, характерные лишь для нечетких отношений. Заметим, что так же, как и в случае нечетких множеств, операции объединения и пересечения нечетких отношений (и операцию произведения) можно определить различными способами. [4]

Пусть на множестве X заданы два нечетких отношения A и B, т.е. в декартовом произведении заданы два нечетких множества A и B. Нечеткие множества

называются соответственно объединением и пересечением нечетких отношений А и В на множестве Х.

Для функции принадлежности получаем

Говорят, что нечеткое отношение В включает в себя нечеткое отношение А, если для нечетких множеств А и В выполнено . Для функций принадлежности этих множеств неравенство выполняется при любых . В рассмотренном выше примере отношений ( ? ) и ( >> ) нечеткое отношение содержится в отношении R, т.е. должно быть для любых чисел .

Если R - нечеткое отношение на множестве X, то нечеткое отношение R, характеризующееся функцией принадлежности

,

называется дополнением в Х отношения R.

Дополнение имеет смысл отрицания исходного отношения. Например, для нечеткого отношения R=(лучше) его дополнение R` (не лучше).

Обратное к R нечеткое отношение R-1 на множестве Х определяется следующим образом:

или с помощью функций принадлежности:

.

Важное значение в прикладных задачах имеет произведение или композиция нечетких отношений. В отличие от обычных отношений, произведение нечетких отношений можно определить различными способами. Здесь мы приведем некоторые из возможных определений этой операции. [3]

Определение 3.11.

Максиминное произведение нечетких отношений А и В на множестве Х характеризуется функцией принадлежности вида

.

В случае конечного множества Х матрица нечеткого отношения равна максиминному произведению матриц отношений А и В, т.е. получается с помощью тех же операций, что и матрица произведения обычных отношений.

Определение 3.11а.

Минимаксное произведение нечетких отношений А и В на Х определяется функцией принадлежности вида

Определение 3.11б.

Максимультипликативное произведение нечетких отношений А и В определяется функцией принадлежности

Для сравнения друг с другом введенных операций произведения приведем простой пример произведения отношений А и В на конечном множестве X, состоящем из двух элементов.

Пример.

Проекции нечетких отношений.

Выберем некоторое число y и рассмотрим множество всех чисел x из интервала [0,1] таких, что (рис. 3.8), т.е. множество вида .

Для фиксированного множество R(y) образовано всеми числами из интервала [0,1], не меньшими y. Объединение всех таких множеств по всем называется первой проекцией R(1) отношения R, т.е.

.

Множество R(1) обладает тем свойством, что для каждого его элемента x найдется элемент y , что (в данном примере ). [3]

Рис. 3.8. Множество всех чисел x из интервала [0,1] таких, что

Если аналогичным образом ввести множества вида

и взять их объединение по всем , то получим вторую проекцию R(2) отношения R:

.

Для любого элемента найдется такой элемент , что (в данном примере ).

В приведенном примере первая и вторая проекции отношения R ( ? ) совпадают со всем интервалом [0, 1], т.е. . Более общий случай иллюстрирует рис. 3.9.

Рис. 3.9. Общий случай проекции

Легко проверить, что декартово произведение представляет собой наименьшее прямоугольное множество, содержащее R.

Вернемся к нечетким отношениям. Пусть R - нечеткое отношение на множестве X с функцией принадлежности . Для произвольного нечеткое множество R(y) представляет собой нечеткое множество элементов x множества X, связанных с выбранным y отношением R. Функция принадлежности этого множества имеет вид , где y - фиксированный элемент множества X. Например, для нечеткого отношения R=(близко к), заданного на числовой оси, множество R(y) можно понимать как нечеткое множество чисел, близких к выбранному числу y.

Объединение нечетких множеств R(y) по всем называется первой проекцией R(1) нечеткого отношения R. [3]

Согласно определению операции объединения нечетких множеств функция принадлежности имеет вид

.

Если - декартово произведение первой и второй проекций нечеткого отношения R, то . Этот факт следует из определения функции принадлежности декартова произведения нечетких множеств:

Пример.

Пусть матрица нечеткого отношения R на множестве имеет вид

Тогда функции принадлежности первой и второй проекции этого отношения таковы:

Свойства нечетких отношений.

Рефлексивность.

Нечеткое отношение R на множестве X называется рефлексивным, если для любого выполнено равенство

.

В случае конечного множества X главная диагональ матрицы рефлексивного нечеткого отношения R состоит целиком из единиц. Примером рефлексивного нечеткого отношения может служить отношение "примерно равны" в множестве чисел.

Антирефлексивность.

Функция принадлежности антирефлексивного нечеткого отношения обладает свойством

при любом . Антирефлексивно, например, отношение "много больше" в множестве чисел. Ясно, что дополнение рефлексивного отношения антирефлексивно.

Симметричность.

Нечеткое отношение R на множестве X называется симметричным, если для любых выполнено равенство

.

Матрица симметричного нечеткого отношения, заданного в конечном множестве, симметричная. Пример симметричного нечеткого отношения - отношение "сильно различаться по величине".

Антисимметричность.

Функция принадлежности антисимметричного нечеткого отношения обладает следующим свойством:

Это свойство можно описать и следующими двумя эквивалентными способами:

Антисимметричным, например, является нечеткое отношение "много больше".Заметим, что не всякое нерефлексивное (несимметричное) отношение является антирефлексивным (антисимметричным).

Транзитивность.

Нечеткое отношение R на множестве Х называется транзитивным, если .

Из этого определения видно, что свойство транзитивности нечеткого отношения зависит от способа определения произведения нечетких отношений. Если обозначить через максиминное, минимаксное и максимультипликативное произведения отношения R само на себя, то нетрудно убедиться в том, что . Действительно, при любых выполняются неравенства

из которых и вытекают соответствующие включения. [3]

Если к слову транзитивность приписывать название соответствующей операции произведения нечетких отношений, то получаем: (минимаксная транзитивность R) => (максиминная транзитивность R) => (максимультипликативная транзитивность R). Иными словами, нечеткое отношение, обладающее свойством минимаксной транзитивности, обладает транзитивностью и двух других типов, а отношение, обладающее максимультипликативной транзитивностью, может, вообще говоря, и не быть транзитивным в двух других смыслах. [3]

Для обычного отношения, т. е. в случае, когда функция принимает лишь значения 0 и 1, максиминная и максимультипликативная транзитивности эквивалентны обычной транзитивности отношения.

Всюду ниже под транзитивностью нечеткого отношения мы будем понимать максиминную транзитивность, т. е. считать, что при любых функция принадлежности транзитивного нечеткого отношения R на множестве X удовлетворяет неравенству

.

Транзитивным, например, является рассматривавшееся ранее нечеткое отношение .

Транзитивное замыкание нечеткого отношения R определяется по аналогии с обычными отношениями:

Нетрудно проверить, что транзитивное замыкание представляет собой транзитивное нечеткое отношение и что транзитивное нечеткое отношение совпадает со своим транзитивным замыканием. [3]

4. ПРОБЛЕМА УПРАВЛЕНИЯ БАНКОВСКИМИ РЕСУРСАМИ В СВЕТЕ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ

4.1 Описание проблемы

Проблема формализации банковской деятельности и управления ресурсами банка как динамической системы актуальна и является одной из ведущих проблем современности. В работе рассмотрен сравнительно новый класс задач принятия решений, полученный путем объединения идей нечеткости и методик организации банковской деятельности.

В конкретных приложениях в технике, управлении, экономике или экологии подобные проблемы могут обладать самыми различными специфическими особенностями, в связи с чем построение единой "универсальной" методики, позволяющей без адаптации решать многокритериальные задачи в различных отраслях, представляется нецелесообразным как с методической, так и практической точек зрения. [5]

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать