Исследование соотношения в мышцах С- и Х-белков в норме и при патологии
p align="center">4.1. Электронно-микроскопическое изучение агрегационных свойств молекул тайтина, Х-белка, С-белка и Н-белка скелетных мышц кролика

Изучение амилоидогенеза разных белков in vitro проводят в условиях, которые часто не совместимы с условиями in vivo. Для образования амилоидных фибрилл белками семейства тайтина мы использовали условия, близкие к физиологическим. С помощью электронной микроскопии было показано, что исследуемые белки способны формировать разные амилоидные агрегаты, как и другие известные амилоидогенные белки (Chiti et al., 1999; Goldsbury et al., 2000; O'Nuallain et al., 2004; Uversky & Fink, 2004; см. рис. 5, 6).

Результаты электронно-микроскопических исследований представлены на рис. 9-14. Мы показали, что в растворе, содержащем 30 мМ KCl, 10 мМ имидазола, рН 7.0 Х-белок образует спирально скрученные ленточные фибриллы с осевой периодичностью ~60-70 нм, шириной ~40 нм и длиной более 1 мкм (рис. 9 А). Мы обнаружили, что такие же структуры Х-белок образует и в растворе, содержащем 0.15 М глицин-КОН, рН 7.5 (рис. 9 Б). Кроме этого Х-белок, а также С-белок и Н-белок образуют аморфные агрегаты, протофибриллы, линейные фибриллы и пучки линейных фибрилл в растворах: 50 мM NaCl, 10 мM Hepes, pH 7.0; 25 мМ NaCI, 10 мМ Hepes, pH 7.0; 50 мM MgCl2, 10 мM имидазола, pH 7.0; 30 мМ MgCI2, 10 мМ имидазола, pH 7.0; 0.15 М глицин-KOH, рН 7.5 (рис. 10-13).

На рис. 14 представлены электронные микрофотографии пучка линейных фибрилл тайтина скелетных мышц кролика в растворе 0.15 М глицин-KOH, рН 7.5. В этих условиях тайтин образует плотные пучки линейных фибрилл длиной ~3 мкм, шириной до 500 нм и аморфные агрегаты. Мы наблюдали, что аморфные агрегаты, протофибриллы длиной 100-200 нм и диаметром ~3 нм, линейные фибриллы диаметром ~7 нм и пучки линейных фибрилл длиной более 3 мкм и шириной до 500 нм могут присутствовать в одном и том же образце. Это, по-видимому, отражает разные стадии фибриллогенеза, характерные для формирования амилоидов (Kelly, 1998; Chiti et al., 1999; Goldsbury et al., 2000).

Для подтверждения амилоидной природы фибрилл тайтина, Х-белка, С-белка и Н-белка наши дальнейшие исследования были направлены на сравнение агрегатов, образуемых белками семейства тайтина, с агрегатами известных амилоидогенных белков и, в частности, Ав-пептида, играющего важную роль в патогенезе болезни Альцгеймера.

4.2. Электронно-микроскопическое изучение агрегационных свойств Ав(25-35)-пептида в сравнении с агрегацией молекул Х-белка

Для сравнения спирально скрученных фибрилл Х-белка с другими амилоидными фибриллами мы изучили агрегационные свойства Ав(25-35)-пептида. Мы показали, что Ав(25-35)-пептид, инкубированный в течение 24 ч при 37?С образует подобно Х-белку (рис. 15 А) спирально скрученные ленты несколько микрон длиной и диаметром 25-27 нм с вариабельным осевым периодом 170-250 нм (рис. 15 Б, В).

Ленты построены из нескольких длинных и узких фибрилл диаметром 3-5 нм. На микрофотографиях они лучше видны, если смотреть вдоль ленты. Обнаруживаются также листовые агрегаты (рис. 15 Г), сформированные за счет боковой агрегации более коротких узких фибрилл. Такие агрегаты достигают в ширину ~50 нм. Таким образом, с помощью электронной микроскопии нами было установлено морфологическое сходство фибрилл Х-белка с амилоидами Aв-пептида, найденными в мозге при болезни Альцгеймера.

4.3. Подтверждение амилоидной природы агрегатов, образуемых белками семейства тайтина (тайтина, Х-белка, С-белка и Н-белка) при их взаимодействии со специфическими красителями на амилоиды

Конго красным и тиофлавином Т

Основным методом выявления амилоидной природы фибрилл, образуемых разными белками, является их способность взаимодействовать со специфическими красителями Конго красным и тиофлавином Т (Klunk et al., 1989; LeVine, 1993, 1995; Krebs et al., 2005). Именно эти красители используют в клинической практике для определения амилоидных отложений in vivo и для исследования амилоидогенеза in vitro разными белками.

При окрашивании Конго красным фибриллярных структур, формируемых исследуемыми белками, мы наблюдали двойное лучепреломление в поляризационном микроскопе, а при окрашивании их тиофлавином Т - желто-зеленую флуоресценцию в люминесцентном микроскопе. На рис. 16 представлены данные связывания Х-фибрилл, сформированных в растворе, содержащем 30 мМ KCl, 10 мМ имидазола, рН 7.0, с красителями Конго красным и тиофлавином Т.

При спектральных исследованиях интенсивность флуоресценции тиофлавина Т в присутствии фибрилл Х-, Н- и С-белков и тайтина возрастала в ~10, ~9, ~7 и ~5 раз соответственно по сравнению с интенсивностью флуоресценции красителя в присутствии этих белков в молекулярной форме (рис. 17). Незначительное увеличение интенсивности флуоресценции тиофлавина Т наблюдается и в присутствии молекулярных форм тайтина, Х-, С- и Н-белков, что согласуется с литературными данными для белков, содержащих в-складчатую структуру (LeVine, 1993; 1995).

Рис. 17. Интенсивность флуоресценции тиофлавина Т (TT): А - в присутствии молекулярного X-белка (в растворе, содержащем 0.3 M KCl, 10 мМ К-фосфат, рН 7.0) и в присутствии фибрилл X-белка (0.15 М глицин-KOH, рН 7.5); Б - в присутствии молекулярного С-белка (0.3 M KCl, 10 мМ К-фосфат, рН 7.0) и в присутствии фибрилл С-белка (0.15 М глицин-KOH, рН 7.5); В - в присутствии молекулярного Н-белка (0.3 M KCl, 10 мМ К-фосфат, рН 7.0) и в присутствии фибрилл Н-белка (0.15 М глицин-KOH, рН 7.5); Г - в присутствии молекулярного тайтина (0.6 М KCl, 30 мМ KH2PO4, рН 7,0) и в присутствии фибрилл тайтина (0.15 М глицин-KOH, рН 7.5). Молярное соотношение красителя и белка 1:2.

При измерении спектральных характеристик раствора Конго красного в присутствии фибрилл тайтина, Х-, С- и Н-белков наблюдался сдвиг спектра поглощения красителя в длинноволновую область от ~490 нм к ~500 нм (рис. 18), что также является характерной чертой при связывании амилоидных фибрилл с Конго красным (Klunk et al., 1989).

Рис. 18. Спектры поглощения свободного красителя показаны линиями красного цвета. Спектры поглощения красителя Конго красного (линия синего цвета): А - в присутствии фибрилл X-белка (в растворе, содержащем 0.15 М глицин-KOH, рН 7.5); Б - в присутствии фибрилл С-белка (0.15 М глицин-KOH, рН 7.5); В - в присутствии фибрилл Н-белка (0.15 М глицин-KOH, рН 7.5); Г - в присутствии фибрилл тайтина (0.15 М глицин-KOH, рН 7.5). Молярное соотношение красителя и белка 1:2.

Проведенные исследования указывают на специфичность связывания красителей с фибриллярными агрегатами, образуемыми белками семейства тайтина, подтверждая их амилоидную природу.

4.4. Изучение вторичной структуры тайтина и белков его семейства до и после образования амилоидных фибрилл

В работах по изучению образования амилоидных фибрилл белками in vitro используется длительная икубация и условия, несовместимые с условиями in vivo (денатурирующие вещества, низкие значения рН, высокие температуры, добавление ряда веществ, не присутствующих в клетке и т.п.) (Stine et al., 2003). Как известно, эти условия приводят к трансформации структуры молекулы белка с образованием в-складчатости, характерной для амилоидных фибрилл. (Juzczyk et al., 2005). Согласно литературным данным (Labeit & Kolmerer, 1995; Weber et al., 1993; Vaughan et al., 1993), молекулы белков семейства тайтина уже содержат в-складчатую структуру. Нами были проведены исследования вторичной структуры белков до и после образования ими амилоидных фибрилл. Как показано на рис. 20 молекулярные и фибриллярные формы Х-, С- и Н-белков характеризуются сходными спектрами кругового дихроизма (КД). Форма спектров фибрилл свидетельствует в пользу того, что в их составе практически отсутствуют б-спиральные участки, а преобладающими элементами являются в-складки. Молекулярная форма тайтина содержит ~10% б-спирали. После образования амилоидных фибрилл молекула тайтина содержит только в-структуру (рис. 19).

Рис. 19. Спектры кругового дихроизма (КД) в дальней Уф-области: А - Х-белка;

Б - С-белка; В - Н-белка; Г - тайтина. Спектры КД молекулярных форм Х-, С-, Н-белков (в растворе, содержащем 0.3 M KCl, 10 мМ К-фосфат, рН 7.0) и молекулярной формы тайтина (0.6 М KCl, 30 мМ KH2PO4, рН 7.0) показаны линией красного цвета. Спектры КД фибрилл Х-, С-, Н-белков и тайтина (0.15 М глицин-KOH, рН 7.5) показаны линией синего цвета.

Понятно, что при наличии у этих белков в-складчатой структуры, необходимой для образования амилоидных фибрилл, облегчается процесс формирования ими амилоидов in vitro и увеличивается опасность их быстрого роста в клетке.

4.5. Скорость образования амилоидных фибрилл Х-белка

Процессы формирования амилоидных фибрилл разными белками in vitro характеризуются разной скоростью (Kim et al., 2002; Stine et al., 2003; Hwang et al., 2004). Скорость фибриллообразования может зависеть от многих факторов: состава растворов, температуры, рН, и др. Но наибольшее влияние оказывает, скорее всего, тип вторичной структуры белка. Если белок содержит высокий процент б-спирали, то требуется трансформация типа "б-спираль - в-складчатость" (рис. 4). Так как белки семейства тайтина уже содержат в-складчатую структуру, то нет необходимости в изменении вторичной структуры. Скорость образования амилоидных структур белками семейства тайтина была продемонстрирована на примере Х-белка, так как он образует наиболее упорядоченные амилоидные структуры и методом электронной микроскопии можно визуально оценить, как происходит процесс фибриллообразования. Параллельно скорость образования амилоидных фибрилл Х-белком оценивалась по их связыванию с флуоресцентным красителем тиофлавином Т, который широко используется в качестве маркера амилоидов (LeVine, 1993).

В образцах белка происходило накопление их амилоидных структур, о чем свидетельствует возрастание флуоресцентного сигнала тиофлавина Т. Результаты представлены на рис. 20. Не происходит значительного увеличения интенсивности флуоресценции тиофлавина Т при связывании с Х-белком в первые часы инкубации (1-4 часа), так как фибриллы еще не сформированы, а присутствуют аморфные агрегаты (рис. 20 А). При дальнейшей инкубации интенсивность флуоресценции тиофлавина Т возрастала (рис. 20 Г), что соответствовало образованию амилоидных фибрилл, среди которых наблюдаются и аморфные агрегаты (рис. 20 Б). После 22 часов диализа интенсивность флуоресценции красителя при связывании с фибриллами достигала плато флуоресцентной кривой, что согласуется с данными электронной микроскопии: отмечается присутствие хорошо сформированных спирально скрученных ленточных фибрилл Х-белка (рис. 20 В). Они наблюдаются и после 26 часов диализа.

Рис. 20. А - аморфные агрегаты Х-белка (4 часа диализа), Б - линейные фибриллы и аморфные агрегаты Х-белка (17 часов диализа), В - спирально скрученные ленточные фибриллы Х-белка (22 часа диализа), сформированные в растворе, содержащем 30 мМ KCl, 10 мМ имидазола, рН 7.0. Негативное окрашивание 2% раствором уранилацетата. Шкала 100 нм. Г - скорость образования амилоидных фибрилл Х-белка.

Для многих амилоидогенных белков также характерна временная зависимость образования амилоидных фибрилл. Например, мышечная ацилфосфатаза способна формировать аморфные агрегаты после первых часов инкубации в присутствии трифлуороэтанола при рН 5.5 и температуре 25?С, и только через 45 дней появляются пучки фибрилл (Chiti et al., 1999). Ав(1-40)-пептид при рН 7.2, температуре 37?С в присутствии 0.1% уксусной кислоты после 4 часов инкубации образует аморфные агрегаты и только после 48 часов - длинные фибриллы (Qahwash et al., 2003). Эксперименты со многими белками показали, что перед образованием амилоидов in vitro структура их молекул должна претерпевать трансформацию типа "б-спираль - в-складчатость", что, как правило, требует длительной инкубации и жестких условий, не совместимых с условиями in vivo (низкие значения рН, высокие температуры, добавление ряда веществ, не присутствующих в клетке и т.п.). Согласно результатам нашего исследования, образование амилоидных фибрилл Х-белком происходит в мягких условиях (рН 7.0, температура 3-5°С, ионная сила, близкая к физиологической) и быстрее, чем в случае мышечной ацилфосфатазы человека и Ав(1-40)-пептида. Следует также отметить, что в отличие от других белков, наличие 90% в-складчатой структуры у Х-белка способствует его быстрой агрегации в амилоидные фибриллы in vitro, что указывает на возможность быстрого роста его амилоидных депозитов in vivo.

4.6. Образование амилоидных фибрилл С-белком миокарда человека при ДКМП и С-белком миокарда кролика

Амилоидные депозиты нередко обнаруживаются в сердце и кровеносных сосудах при кардиомиопатиях и миокардитах. Особо следует отметить амилоидоз сердца (кардиопатический амилоидоз или амилоидная кардиомиопатия), который, как утверждают медицинские специалисты (Сторожаков и др., 2000), к сожалению, не включается в схему дифференциального диагноза даже при резистентной к лечению сердечной недостаточности и диагностируется посмертно. Учитывая все перечисленное выше, мы решили проверить, может ли С-белок, выделенный из сердца пациента с дилатационной кардиомиопатией, образовывать амилоидные фибриллы. Дилатационная кардиомиопатия (ДКМП) - заболевание миокарда неизвестной этиологии, диагностирующееся по расширению (дилатации) левого, правого или обоих желудочков. Нарушается систолическая функция желудочков, возможно развитие застойной сердечной недостаточности, часто наблюдается нарушение ритма желудочков и предсердий. В ходе развития ДКМП сердце постепенно, но необратимо, теряет свою функциональную активность (Хубутия, 2001; Шумаков и др., 2003).

Наши исследования показали, что в разных растворах (30 мМ KCl, 10 мМ имидазола, рН 7.0; 0.01 М К-фосфат, pH 7.0; 30 мМ CaCl2, 10 мМ имидазола, рН 7.0; 30 мМ NaCl, 10 мМ имидазола, рН 7.0; 30 мМ MgCl2, 10 мМ имидазола, рН 7.0; 50 мМ MgCl2, 10 мМ имидазола, рН 7.0; 0.15 М глицин-КОН, рН 7.0) С-белок миокарда человека образует аморфные агрегаты и пучки линейных фибрилл длиной до 3 мкм и шириной до 500 нм (рис. 21 Г).

С-белок миокарда кролика в тех же условиях образует аморфные агрегаты и пучки линейных фибрилл длиной более 2 мкм и шириной до 500 нм (рис. 21 А-В). Амилоидная природа фибрилл С-белка миокарда человека и кролика была подтверждена поляризационной и флуоресцентной микроскопией, а также спектральными методами при взаимодействии их с Конго красным и тиофлавином Т (Марсагишвили и др., 2006).

Таким образом, с помощью разных специфических тестов мы показали, что белки семейства тайтина способны формировать амилоиды in vitro. Дальнейшие наши исследования должны быть направлены на тестирование токсических свойств амилоидов этих белков, на поиск подходов к их разрушению и предотвращению их образования.

СПИСОК ЛИТЕРАТУРЫ

Барсуков А., Шустов С., Шкодкин И., Воробьев С., Пронина Е. (2005) Гипертрофическая кардиомиопатия и амилоидоз сердца // Врач Вып. 10. С. 42-46.

Виноградова О.М. (1980) Первичный и генетические варианты амилоидоза // М. Медицина 224 с.

Вихлянцев И.М. (2005) Изучение тайтина и белков его семейства в скелетных мышцах в норме, при гибернации и микрогравитации // диссертационная работа. Пущино. 105 с.

Вихлянцев И.М., Макаренко И.В., Халина Я.Н., Удальцов С.Н., Малышев С.Л., Подлубная З.А. (2000) Изменения изоформного состава цитоскелетного белка тайтина - адаптационный процесс при гибернации // Биофизика. Т. 45. Вып. 5. С. 831-835.

Вихлянцев И.М., Алексеева Ю.А., Шпагина М.Д., Удальцов С.Н., Подлубная З.А. (2002) Изучение свойств С-белка скелетных и сердечных мышц сусликов Citellus undulatus на разных стадиях зимней спячки // Биофизика. Т. 47. Вып. 4. С. 701-705.

Вихлянцев И.М., Подлубная З.А., Шенкман Б.С., Козловская И.Б. (2006) Полиморфизм тайтина скелетных мышц при экстремальных условиях зимней спячки и микрогравитации: диагностическая ценность изоформ тайтина для выбора подходов к коррекции "гипогравитационного мышечного синдрома" // Докл. Акад. Наук. Т. 407. № 5. С. 692-694.

Гуровский Н.Н., Еремин А.В., Газенко О.Г., Егоров А.Д., Брянов И.И., Генин А.М. (1975) Медицинские исследования в космических полетах кораблей «Союз-12, 13, 14,» и орбитальной станции «Салют-3» // Космич. Биол. и мед. № 2. С. 48-53.

Лукоянова Н.А., Шпагина М.Д., Удальцов С.Н., Игнатьев Д.А., Колаева С.Г., Подлубная З.А (1996) Изменения в структурной организации реконструированных нитей миозина из скелетных мышц зимоспящих сусликов Citellus undulatus во время пробуждения // Биофизика. Т. 41. С. 116-122.

Макаренко И.В., Шпагина М.Д., Вишневская З.И., Подлубная З.А. (2002) Изменение структуры и функциональных свойств цитоскелетного эластичного белка тайтина при дилатационной кардиомиопатии // Биофизика. Т. 47. Вып. 4. С. 706-710.

Макаренко И.В. (2004) Роль полиморфизма тайтина в регуляции структурно-функциональных свойств миокарда в норме и при патологии // Диссертационная работа. Пущино. 107 с.

Марсагишвили Л.Г., Осипова Д.А., Вихлянцев И.М. (2006) С-белок миокарда человека образует амилоидные фибриллы // Тезисы докл. 9-ой Всероссийской медико-биологической конференции молодых ученых «Человек и его здоровье», 22 апреля, Санкт-Петербург, С. 207.

Мягкова Л.П. (2000) Энтеропатический амилоидоз: особенности клинических проявлений, место среди других форм амилоидоза. // Клиническая медицина. № 1. С. 11-14.

Подлубная З.А. (1981) Формирование сократительных структур в миогенезе // В кн.: Проблемы миогенеза. Л. с. 51-74.

Сторожаков Г.И., Гендлин Г.Е. (2000) Амилоидоз сердца // Сердечная недостаточность. Т. 1. № 1.

Фрейдина Н.А., Орлова А.А., Подлубная З.А. (1980) Электронно-микроскопическое исследование структуры С-белка и его взаимодействия с миозином, фрагментами миозина и актином // В кн.: Структурные основы и регуляция биологической подвижности. М. 160-163 с.

Хубутия М.Ш. (2001) Дилатационная кардиомиопатия // Вестник трансплантологии и искусственных органов, № 3-4. C. 32-40.

Шубникова Е.А., Юрина Н.А., Гусев Н.Б., Балезина О.П., Большакова Г.Б. (2001) Мышечные ткани // М: Медицина. 240 с.

Шумаков В.И., Хубутия М.Ш., Ильинский И.М. (2003) Дилатационная кардиомиопатия // ООО «Издательство Триада». 448 с.

Alyonycheva T.N., Mikawa T., Reinach F.C., Fischman D.A. (1997) Isoform-specific interaction of the myosin-binding proteins (MyBPs) with skeletal and cardiac myosin is a property of the C-terminal immunoglobulin domain // J Biol Chem. V. 272 (33). P. 20866-20872.

Bahler M., Moser H., Eppenberger H.M., Wallimann T. (1985) Heart C-protein is transiently expressed during skeletal muscle development in the embryo, but persists in cultured myogenic cells // Develop. Biol. V. 112. P. 345-352.

Bauer H.H., Aebi U., Haner M., Hermann R., Muller M, Merkle H.P. (1995) Architecture and polymorphism of fibrillar supramolecular assemblies prodused by in vitro aggregation of human calcitonin. // J. Struct. Biol. V. 115. P. 1-15.

Bennett P., Craig R., Starr R., Offer G. (1986) The ultrastructural location of C-protein, X-protein and H-protein in rabbit muscle // J. Muscle. Res. & Cell Motil. V. 7 (6). P. 550-567.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать