Классификация живых систем
p align="left">Антиэнтропические свойства эндоспоры структурно обусловлены как ее химическим составом, отличным от такового вегетативной клетки, так и макроморфологией ее оболочки, т.е. определены на молекулярном и надмолекулярном уровнях.

На макроморфологическом уровне жизнестойкость метаболически неактивной эндоспоры обусловлена наличием сложно устроенной мощной оболочки, содержащей такие структурные элементы, которые отсутствуют у вегетативной клетки. Внутренняя, прилежащая к протопласту зона оболочки образована двумя слоями обычной клеточной мембраны, между которыми развивается специфичная для эндоспоры толстая прочная электронопрозрачная оболочка -- кортекс, состоящая из пептидогликана уникальной структуры, возможно, сходной для всех или большинства спорообразующих бактерий и во многих отношениях отличной от структуры пептидогликанов вегетативных клеток. Внешняя зона оболочки в основном белковая, содержащая до 80% всех белков споры, причем эти белки отличаются необычно высоким содержанием цистеина и гидрофобных аминокислот и обнаруживают чрезвычайную устойчивость к различным литическим факторам.

Дипиколиновая кислота, содержащаяся в эндоспоре в виде дипико-лината кальция, составляет 10--15% сухой массы споры и локализована в протопласте; она обусловливает термостабильность зрелой споры, что показано экспериментально. Другой важный химический фактор жизнестойкости эндоспор -- их сильная обезвоженность; с увеличением содержания воды в спорах терморезистентность их снижается.

Таким образом, примеры вирионов и эндоспор показывают, что возможность существования закрытых живых систем всецело обусловлена структурными адаптациями организмов на молекулярном и надмолекулярном уровнях. Эти адаптации позволяют нефункционирующей, метаболически инертной структурной системе организма в течение некоторого времени сохранять свою жизнеспособность, уклоняясь от активного, функционального контакта с окружающей средой, параметры которой в той или иной мере выходят за пределы эволюционно обусловленного диапазона, пригодного для метаболически активной жизни.

Следовательно, закрытые живые системы всегда представлены организмами, находящимися. в метаболически неактивном состоянии, т. е. в состоянии полного анабиоза.

Организменные и надорганизменные живые системы

Деление живых систем на организменные и надорганизменные отражает два основных типа их функциональной организации. Это деление по своей сути не имеет адекватных ему альтернатив: как функционально неделимая, генетически первичная живая система, имеющая собственную материализованную программу развития в форме генома, организм принципиально отличается от любых надорганизменных ассоциаций, программа развития которых всегда обеспечена только через посредство их подсистем, т. е. конкретных организмов, образующих ассоциацию. В силу этого, по сравнению с делением живых систем на организменные и надорганизменные, все подразделения последних могут иметь только подчиненное значение.

Поэтому, полностью разделяя мнение о том, что в иерархии уровней организации живого организменный уровень является основным, универсальным и первичным, автор считает, что при делении всего многообразия существующих живых систем по уровням их организации как первую ступень классификации следует выделять организменные и надорганизменные системы. Выделение же в качестве равнозначных по рангу трех основных уровней -- орга-низменного, популяционного и экосистемного в свете сказанного представляется необоснованным.

Организменный и надорганизменный уровни функциональной организации живой системы наиболее существенно различаются 1) по информационной структуре живых систем, 2) по степени их делим >сти и 3) по степени иерархичности их функционально-структурно" организации.

Информационная структура организменных и надорганизменных живых систем принципиально различна. Все организмы характеризуются наличием централизованной собственной программы развития, основу которой составляет геном, содержащий определенный объем конкретной генетической информации. Централизация собственной программы развития определяет функционально-структурную целостность организма как неделимой единицы жизни. В надорганизменных системах программа развития не является централизованной и существует лишь как интегральный генофонд, образованный геномами конкретных организмов.

Эти различия организменных и надорганизменных систем в структуре собственной программы развития имеют фундаментальное значение в определении всех их прочих особенностей, и прежде всего степени их функционально-структурной интеграции, общий уровень которой в организменных системах всегда неизмеримо выше, чем в надорганизменных. В этом отношении между организменными и надорганизменными системами существуют качественные различия, определяемые мерой их делимости.

Делимость организменных и надорганизменных живых систем различна в принципе. Организмы всегда принципиально неделимы, что с неизбежностью вытекает уже из самого определения организма как элементарной живой системы, тогда как надорганизменные системы -- популяции, колонии, экосистемы и т. п.,-- напротив, в той или иной мере всегда делимы.

Если неделимость организма-монобионта в силу моноцентричности его генетической структуры всегда представляется достаточно очевидной и не требует каких-либо комментариев, то неделимость метабионтов и це-нометабионтов в свете известных фактов их вегетативного размножения на первый взгляд часто выглядит спорной. Достаточно вспомнить хотя бы, что,из фрагмента листа бегонии вырастает целое растение, растертая в ступке гидра превращается во множество новых гидр, а из тополя, разделив его на черенки, можно вырастить целую тополиную рощу.

В действительности, однако, подобные факты не противоречат идее неделимости организма и в то же время не свидетельствуют о том, что потенциально способный к вегетативному размножению родительский организм является составным. Вся суть дела заключается в том, что отделенные от родительского организма фрагменты сразу же начинают контактировать со средой как целостные организменные живые системы, что было не свойственно им до отделения от родительской живой системы, в пределах которой они проявляли себя лишь как безусловно несамостоятельные, в функциональном отношении односторонне специализированные структуры. В этом проявляется пластичность информационной структуры многоклеточных организмов, обусловленная тем, что каждая клетка многоклеточного тела имеет собственный геном, благодаря чему потенциально является зачатком целостной организменной системы. Поэтому механическая делимость тела, характерная для некоторых многоклеточных, не- означает функциональной делимости их как организменных систем: при насильственном, эктогенном делении тела такого организма возникающие фрагменты именно вследствие отделения их от родительской системы сразу же превращаются в дочерние организмы, т. е. вступает в действие эволюционно выработанный механизм вегетативного размножения с помощью простой фрагментации.

При этом, однако, для каждого многоклеточного организма, способного к вегетативному размножению посредством эктогенной фрагментации, существует определенный минимальный размер фрагмента, при котором он еще может взаимодействовать со средой как целостная организменная система. Например, если уже упомянутая бегония может размножаться даже фрагментами листьев, то для тополя минимальным жизнеспособным фрагментом является стеблевый черенок, т. е. кусочек стебля с небольшим числом листьев. Это указывает на эволюционную обусловленность допустимых уровней эктогенного фрагментирования и подтверждает правильность его интерпретации как способа вегетативного размножения: слишком мелкие фрагменты, размер которых ниже допустимого для данного вида, оказываются уже нежизнеспособными и здесь мы можем, следовательно, убедиться в том, что и в подобных случаях сохраняется обычная для всех организмов функциональная неделимость.

Таким образом, в любом случае вегетативного размножения мы можем констатировать принципиальную неделимость организма за пределами того эволюционно обусловленного уровня фрагментирования, который является экологически целесообразным для данного вида.

Иерархичность организации в той или иной мере свойственна всем живым системам. Однако если на организменном уровне она всегда хорошо выражена и составляет главное условие, обеспечивающее возможность структурного усложнения организмов, то в надорганиз-менных системах в некоторых случаях может быть выражена, напротив, очень слабо, примером чего могут служить хотя бы разного рода временные ассоциации животных, возникающие на относительно короткое время, в частности такие, как небольшие стайки мелких кочующих птиц.

Организменные живые системы

Организменные живые системы представляют собою филогенетически первичный, элементарный вариант живой системы, возникновение которого исторически соответствовало началу собственно биологической эволюции и само по себе явилось результатом длительного предбиологичес-кого развития.

Как автокаталитический процесс предбиологическая эволюция, судя по всему, имела в своей основе принцип гиперцикла, т. е. «принцип естественной самоорганизации, обусловливающий интеграцию и согласованную эволюцию системы функционально связанных самореплицирующихся единиц». Такими самореплицирующимися единицами на ранних стадиях предбиологической эволюции были, видимо, предшественники рибонуклеиновой кислоты -- РНК-подобные полимеры, которые «в силу своих физических свойств наследуют способность к самовоспроизведению, а это является необходимой предпосылкой для систематической эволюции».

С возникновением процесса трансляции в этот автокаталитический гиперцикл были вовлечены аминокислоты, в результате чего он стал нук-леиново-пептидным, а в конечном счете, после достаточного удлинения пептидных цепей,-- нуклеиново-белковым, соединив в себе, таким образом, оба важнейших химических компонента будущей организменной 'системы: информационное начало в виде нуклеиновой кислоты и структурно-каталитическое -- в виде белка.

Не останавливаясь на деталях предбиологической эволюции, отделенной от нас почти 4 млрд. лет и происходившей в условиях, о которых мы не имеем достаточно ясного представления, отметим лишь, что на этом предбиологической, т. е. доорганизменном, этапе эволюционирующий функционально-структурный комплекс был представлен некоторой ассоциацией доорганизменных систем -- макромолекул и простых надмолекулярных агрегатов. Интегративная эволюция подобных ассоциаций со

Рис. 1 Древнейший известный организм -- бактерия Isuasphaera isua. По Pflug, с изменениями.

временем привела к становлению первых простых организмов -- прото-бионтов. Известные в настоящее время наиболее древние реальные палеонтологические свидетельства существования таких организмов обнаружены в отложениях, возраст которых приближается к 4 млрд. лет. Таковы, в частности, мельчайшие сфероподобные организмы диаметром около 30 мкм, найденные в Юго-Западной Гренландии в слоях возрастом около 3,8 млрд. лет и описанные как Isuasphaera isua.

Таким образом, первичные организмы-протобионты возникли на основе длительной предбиологической интегративной эволюции некоторой ассоциации доорганизменных структур, организованных на уровне макромолекул и простых надмолекулярных агрегатов. Становление протобион-тов явилось непосредственным результатом акта структурной агрегации этих доорганизменных объектов молекулярного уровня, и прежде всего молекул нуклеиновых кислот и белков, воссоединение которых в единую автокаталитическую самореплицирующуюся информационно-структурную систему было, несомненно, самым главным, первым и решающим шагом на пути превращения ассоциации доорганизменных структур в организм.

Как функционально неделимые самореплицирующиеся информационно-структурные системы все первичные организмы имеют одну важнейшую общую черту: они элементарны по своей информационной структуре. Все они имеют только один информационный центр в форме генома, т. е. одну единую, неделимую материализованную генетическую программу развития, всегда централизованную в масштабах организменной живой системы. В соответствии с этим, принимая во внимание информационную неделимость подобных организмов, мы называем ихмонобионтами, а их единую, неделимую собственную программу развития -- монобионтной.

Монобионтами были первые древнейшие доклеточные протобионты. Среди современных организмов к числу монобионтов относятся: 1) простые одноклеточные -- прокариоты и одноядерные эукариоты и 2) вирусы, представляющие собою, судя по всему, результат вторичного упрощения более сложных, организмов. Если монобионтный характер одноклеточных прокариот и вирусов всегда достаточно очевиден, то мо-нобионтность одноядерных эукариот нуждается в специальном обсуждении в связи с 1) вероятным симбиотическим происхождением эукариоти-ческой клетки, 2) ее различной плоидностью и 3) фрагментацией ее ядра.

Симбиотический характер эукариотической клетки в настоящее время признается почти всеми. Если классическая точка зрения предполагает аутогенное происхождение всех эукариотических органелл, т. е. возникновение их из вещества протоэукариотической клетки, то, согласно симбиотической теории, эукариотическая клетка возникла в результате серии последовательных симбиозов. Суть этой теории сводится к тому, что «всё эукариоты *сформировались в результате симбиоза между чрезвычайно далекими друг от друга видами прокариот: нуклеоцитоплазма образовалась из микроорганизмов- «хозяев», митохондрии -- из бактерий, дышащих кислородом, пластиды -- из хлорокси- или цианобактерий, а ундулиподии -- из спирохет, прикреплявшихся к поверхности хозяев». «Если гетеротрофные эукариоты три-геномны благодаря своим митохондриям, ундулиподиям и нуклеоцитоплаз-ме, то растения уже квадригеномны благодаря дополнительной органел-ле -- своим фотосинтезирующим пластидам».

Таким образом, согласно симбиотической теории, в результате серии последовательных симбиозов возникли одноклеточные эукариотические организмы, давшие затем начало всему многообразному миру многоклеточных эукариот. Не рассматривая конкретные аргументы этой теории, которые излагаются в книге Л. Маргелис, заметим, что симбиотиче-ская природа эукариотической клетки представляется особенно вероятной в свете четырех обстоятельств, каковы:

многочисленные и весьма разнообразные по характеру факты эндо-симбиоза современных прокариот и одноклеточных эукариот;

гомология нуклеотидных последовательностей в пределах отдельных категорий органелл, более выраженная между аналогичными органеллами различных видов и групп эукариот, чем между любой из органелл и «своей» нуклеоцитоплазмой данного вида;

глубокие и разноплановые морфологические гомологии в пределах каждой из категорий органелл, примером чего могут служить, в частности, такие факты, как структура эукариотических ундулиподии, построенных по типу 9 + 2, и центриолей и кинетосом -- по типу 9 + 0;

многочисленные и глубокие аналогии между органеллами современных эукариот и свободноживущими прокариотами, прежде всего аналогии между хлоропластами и различными цианобактериями.

Хотя симбиотическая концепция эукариотической клетки, несомнен-.но, основывается на множестве неопровержимых фактов и серьезных логических доводов, наряду с нею продолжает существовать и противоположная точка зрения, утверждающая идею прямой филиации, т. е. несим-биотический генезис эукариот. Для нас, однако, в связи с рассмотрением особенностей монобионтов наибольший интерес представляет именно симбиотическая теория: идея прямой филиации уже сама по себе находится в явном и бесспорном соответствии с монобионтным характером одноядерной эукариотической клетки, тогда как симбиотическая концепция, утверждающая гетерогенный характер одноядерной одноклеточной эукариоты, требует специального обсуждения.

В действительности же и допущение симбионтной природы одноядерной эукариотической клетки нисколько не противоречит ее монобионтному характеру. Каково бы ни было происхождение эукариотических органелл -- митохондрий, пластид и ундулиподии,-- их присутствие в. одноядерной клетке не нарушает моноцентричности ее генетической структуры, поскольку это свойство всецело обусловлено наличием в ней единственного ядра. Как бы ни были многочисленны и разнообразны внеядерные геномы, вся их совокупность всегда находится в тесной функциональной связи *с ядерным геномом, который является важнейшим и единственным координирующим генетическим центром, что и определяет монобионтный характер одноядерной клетки и ее собственной программы развития.

Соответственно этому типы клеток -- монады, диады, триады, тетрады, пентады, гексады и т. п., различающиеся по числу содержащихся в них белоксинтезирующих единиц, при условии их одно-ядерности все являются монобионтами, поскольку их генетическая структура остается строго централизованной благодаря наличию в каждой из них единственного ядра.

Плоидностъ одноядерной клетки, т. е. наличие в ней одной, двух или же четырех и более копий генома, также не меняет ее общей централизованной информационной структуры, характерной для монобионтов.

Диплоидность создает, как известно, значительные биологические преимущества, позволяя, в частности, нейтрализовать многие вредные мутации, поскольку большинство из них рецессивны и; в диплоидных клетках подавляются доминантными нормальными аллелями. За счет диплоидности достигается, следовательно, стабилизация, генетической программы развития клетки при сохранении строго моноцентрического характера ее информационной структуры. Наличие этого-защитного дублирующего механизма подчеркивает функциональную целостность диплоидного ядра и подтверждает тем самым принципиальное' тождество моноцентрической информационной структуры гаплоидных и диплоидных клеток.

Полиплоидность особенно обычна у растений. Она способствует увеличению размеров организма и повышает его устойчивость к разного рода неблагоприятным условиям, что, в частности, проявляется в увеличении доли полиплоидных видов растений в арктических и высокогорных областях. Например, доля полиплоидных видов во всей наземной растительности увеличивается с 37% на Кикладах и 38% в Алжире до 76% на Шпицбергене и 86% в Северной Гренландии. Полиплоидность изменяет, следовательно, некоторые свойства ядра как информационного центра клетки, однако не нарушает при этом моноцентрического характера ее общей информационной структуры: при любом уровне плоидности клетка остается одноядерной и, следовательно, генетически моноцентричной.

Известные различия между гаплоидными, диплоидными и полиплоидными клетками имеются в делимости их ядер, однако эти различия-не касаются генетического моноцентризма клеток. Например, только для-полиплоидной клетки возможен такой саособ деления, при котором ее-высокополиплоидное ядро делится на некоторое число ядер с более низко» плоидностью и образуется соответствующее число дочерних клеток, как. это наблюдается, например, у некоторых радиолярий.

Таким образом, диплоидность и полиплоидность способствуют повышению жизнеспособности организма путем увеличения его размеров и? повышения стабильности его генетической системы. Функциональная и структурная целостность ядра с повышением уровня его плоидности не' только не нарушается, но и становится более глубокой и многоплановой, т. е. моноцентризм генетической системы клетки дополняется новыми аспектами. Следовательно, генетический моноцентризм, т. е. функциональная неделимость информационной структуры в равной мере свойственна-всем одноядерным клеткам.-- как гаплоидным, так и диплоидным и полиплоидным.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать