Концепции современного естествознания
p align="left">

Открытие радиоактивности

В 1895 г. Рентген открыл лучи Рентгена. Это было замечательное научное достижение и газеты писали о нём взахлёб - это ж можно увидеть кости скелета у живого человека или струны рояля не подымая крышки! Недаром Рентгену первому была присуждена Нобелевская премия по физике. Анри Беккерель, подогретый общим ажиотажем, задался вопросом: а не могут ли тела, самопроизвольно светящиеся в темноте, кроме световых лучей испускать и другие, невидимые. С этой целью он провёл ряд экспериментов с фосфоресцирующими объектами и нашёл-таки невидимое излучение, которое засвечивало фотопластинки. Его испускали соли урана (и чистый уран тоже). И это были не лучи Рентгена, а что-то иное. Так же, как Колумб отправился искать короткий путь в Индию, а открыл Америку, так и Беккерель в поисках новых источников лучей Рентгена открыл совершенно новый мир физических явлений - в 1896 г. была открыта радиоактивность. Открытие радиоактивности было непосредственно связано с открытием Рентгена. Более того, некоторое время думали, что это один и тот же вид излучения. Конец 19 в. вообще был богат на открытие различного рода не известных до того “излучений”. В 1880-е английский физик Джозеф Джон Томсон приступил к изучению элементарных носителей отрицательного заряда, в 1891 ирландский физик Джордж Джонстон Стони (1826-1911) назвал эти частицы электронами. Наконец, в декабре Вильгельм Конрад Рентген сообщил об открытии нового вида лучей, которые он назвал Х-лучами. До сих пор в большинстве стран они так и называются, но в Германии и России принято называть лучи рентгеновскими. Эти лучи возникают, когда быстро летящие в вакууме электроны (катодные лучи) сталкиваются с препятствием.

Было известно, что при попадании катодных лучей на стекло, оно испускает видимый свет - зеленую люминесценцию. Рентген обнаружил, что одновременно от зеленого пятна на стекле исходят какие-то другие невидимые лучи. Это произошло случайно: то в темной комнате светился находящийся неподалеку экран, покрытый веществом, который дает яркую желто-зеленую люминесценцию под действием ультрафиолетовых, а также катодных лучей. Но катодные лучи на экран не попадали, и более того, когда прибор был закрыт черной бумагой, экран продолжал светиться. Вскоре Рентген обнаружил, что излучение проходит через многие непрозрачные вещества, вызывает почернение фотопластинки, завернутой в черную бумагу или даже помещенной в металлический футляр. Лучи проходили через очень толстую книгу, через еловую доску толщиной 3 см, через алюминиевую пластину толщиной 1,5 см... Рентген понял возможности своего открытия: “Если держать руку между разрядной трубкой и экраном, - писал он, - то видны темные тени костей на фоне более светлых очертаний руки”. Это было первое в истории рентгеноскопическое исследование. Открытие Рентгена мгновенно облетело весь мир и поразило не только специалистов. В канун 1896 в книжном магазине одного немецкого города была выставлена фотография кисти руки. На ней были видны кости живого человека, а на одном из пальцев - обручальное кольцо. Это была снятая в рентгеновских лучах фотография кисти жены Рентгена.

Открытие электрона

А в следующем, 1897 г. Д. Д. Томсон (лучше произносить по-английски: Джи-Джи Томсон) открыл электрон. Мало кому известный до того времени Д.Д. Томсон был, тем не менее, директором Кавендишевской лаборатории при Кембриджском университете - учреждении, где великие открытия совершались чаще, чем где-либо ещё на планете. Первым Директором Кавендишевской лаборатории был Джеймс Максвелл, вторым - лорд Рэлей, третьим - Д.Д. Томсон. Он занимался катодными лучами.Можно ли пропустить электрический ток через вакуум? Возьмём стеклянную капсулу, впаяем в неё электроды, выкачаем воздух и подключим электроды к мощной батарее. В капсуле (которую далее будем уже называть электронно-лучевой трубкой) появится свечение.

Светится в данном случае разреженный газ. Если в трубке создать более глубокий вакуум, то около отрицательно заряженного электрода (катода) появится зеленоватое свечение. Металлический предмет, помещённый между катодом и стеклом, даст тень (экранированный им участок стекла светиться не будет). Итак, нечто вылетает из отрицательно заряженного электрода (катода), попадает на стеклянную стенку и заставляет её светиться. Назовём это нечто катодными лучами. Может быть, это волны эфира, а может - частицы вещества, «чистого электричества». Та же неопределенность во времена ранних работ Томсона с катодными лучами существует и для лучей Рентгена. Томсону удаётся отклонить катодные лучи в электрическом и магнитном полях. Значит, перед нами не волны эфира, а частицы. Сила отклоняющая частицы в магнитном поле, есть функция, определяемая тремя параметрами - скоростью частиц, их зарядом и массой. Сила отклонения в магнитном поле - функция от тех же трёх параметров. Зная эти силы, получаем систему из двух уравнений с тремя неизвестными. Понятно, что полностью решить их невозможно, но Томсону удаётся вычислить скорость частиц и отношение массы к заряду, m/q.

Пропускаем через раствор или расплав определённое количество электричества q и получаем на электроде определённую массу вещества m, - в электролизной ванне тоже движутся заряженные частицы вещества, их принято называть ионами. Хотя ион - такая же ненаблюдаемая сущность, как и атом, для него есть по крайней мере одна физическая характеристика - отношение массы к заряду.

Однако m/q даже самого лёгкого элемента, водорода, в 2 000 раз больше, чем у частиц катодных лучей. Что же перед нами: ион водорода (или ещё какого-либо элемента) с аномально большим зарядом, или «стандартный» по заряду ион «чистого электричества» с аномально малой массой.

Лучше выбрать последний вариант - во-первых, m/q частиц катодных лучей не зависит от материала катода (Томсон это проверил), т.е. это не есть мельчайшие кусочки катода; во-вторых масса заряженного тела и того же тела, с которого заряд «стёк», не меняется, точнее, разница не может быть измерена лабораторными весами - и для объяснения этого феномена сверхлёгкие частицы «чистого электричества» весьма подходят. Название для гипотетических частиц «чистого электричества» предложили ещё в 1891 г. - «электрон».

Томсон пошёл дальше второго варианта - он решил, что электроны - это кусочки атома, такой штучки, от которой нельзя отрезать кусочек по определению.

Теория радиоактивности Резерфорда-Содди

В 1898 г. супруги Кюри открывают радий, а Резерфорду удаётся расщепить радиоактивные лучи Беккереля. Самое удивительное в явлении радиоактивности - постоянное выделение энергии. Самое непонятное - откуда она возникает? Радий - исключительно радиоактивный элемент. Чуть позже Пьер Кюри подсчитал, что радий выделяет за час около 80 кал. энергии. С одной стороны, эмпириокритики с удовлетворением констатируют, что рухнул ещё один фундаментальный закон природы - закон сохранения энергии. С другой стороны, ежели каждый час грамм радия выделяет 80 кал. … много-много, сколько угодно много часов… а если всю эту энергию вытащить из него разом - вот это будет плюх! Русский символист А. Белый писал в стихах «И мир взорвётся атомною бомбой!». Физики тщетно пытались объяснить, что атомная бомба невозможна, никакими физическими действиями - нагреванием, давлением, электротоком и т. д. нельзя изменить равномерность истечения энергии из радия. Во-вторых, все вопросы, связанные со строением атомов, долгое время будут решаться через радий. Тот, кто владеет радием, владеет ключами к внутреннему миру атомов. Но ключ оказался у Эрнста Резерфорда. Он, во-первых, был исключительно силён и крепок физически, во-вторых, вышел из самого дальнего уголка Британской империи - деревеньки Пунгареху в Новой Зеландии, а в-третьих, сам был университетом (в том числе и нашим, советским); последнее следует понимать так: он создал международную школу атомной физики.

Сам же Резерфорд являлся учеником Дж. Дж. Томсона - самым блестящим. В 1898 г. Резерфорд является аспирантом Томсона. В сильном магнитном и электрическом поле Резерфорд разделяет истекающий из радиоактивного препарата «луч Беккереля» на поток положительно заряженных частиц - б-излучение и поток отрицательных частиц - в-излучение. в-частицы оказались электронами Томсона, а массивные б-частицы были чем-то совершенно новым. После окончания аспирантуры молодой доктор философии Резерфорд едет преподавать в Канаду, в Мак-Гилльский университет, куда в это же время судьба занесла другого выпускника Кэмбриджского университета - химика Ф. Содди. Молодой профессор-физик и лаборант-химик объединили свои усилия в работе над торием. Торий - тоже радиоактивный элемент, но активность его очень слабая, ниже активности урана, не говоря уже о радии. Молодым учёным удалось выделить из препаратов тория вещество под названием «торий-Х», впоследствии оказавшееся изотопом радия. Это было серьёзное открытие, не несущее, однако, ничего необычайного: радий и полоний тоже были выделены как примесь урана.

Очищенный от тория-Х препарат тория терял свою радиоактивность. Неожиданностью оказалось другое: лишённый тория-Х «чистый» торий через некоторое время опять содержал примесь тория-Х. И тогда было произнесено запретное слово: «Трансмутация!». Трансмутация - это алхимический термин, означающий превращение одного элемента в другой. В 1903 г. Резерфорд и Содди опубликовали серию статей, в которых они изложили теорию радиоактивности. С последующими дополнениями она может быть изложена так: радиоактивность есть акт, сопровождающий превращение одного элемента в другой. В процессе радиоактивного распада атомов выделяется огромное количество энергии. в процессе превращения атомов одного элемента в другой выделяются б- или в-частицы. В результате в-распада появляется элемент, следующий за исходным в таблице Менделеева, при б-распаде возникает элемент, стоящий на две клетки левее исходного. каждый радиоактивный элемент характеризуется своим, строго постоянным временем полураспада. Например, для урана это 4,5 млрд. лет, для тория - 14 млрд. лет, изотопа радия, выделенного Кюри - 1 600 лет. За создание теории радиоактивности и открытие явления трансмутации Резерфорду была присуждена нобелевская премия по химии (1908; несмотря на выдающиеся открытия, Резерфорд, член всех академий мира, так и не стал нобелевским лауреатом по физике; Содди получил Нобелевскую премию по химии в 1921 г. за достижения в исследовании изотопов).

Теория броуновского движения как доказательство атомной структуры вещества

В 1828 г. ботаник Броун (правильнее - Браун), рассматривая под микроскопом пыльцу сосны, заметил, что зёрнышки пыльцы подрагивают и перемещаются. И не только пыльца - все мелкие предметы, взвешенные в воде или газе (например, частички, составляющие дым) находятся в непрерывном движении. В 1905 г. Эйнштейн дал физическую теорию этого движения. Согласно кинетической теории газов, молекулы газа находятся в непрерывном движении и постоянно сталкиваются друг с другом. Некоторые молекулы в данный момент времени движутся быстрее, некоторые - медленнее, но средняя скорость при данной температуре и давлении не меняется. Формулу распределения молекул по скоростям вывел Максвелл, она так и называется - распределение Максвелла. Если взять какой-либо диапазон скоростей, например от 0 до 5 000 м/сек и разбить его на несколько интервалов, скажем, на 10, то с помощью распределения Максвелла можно рассчитать, какой процент молекул будет иметь скорость от 0 до 500 м/сек, какой - от 500 до 1000 и т.д.

Это распределение описывает также количество молекул воздуха (а, следовательно, и давление) на любой высоте над уровнем моря - чтобы высоко улететь и приобрести высокую потенциальную энергию, нужно иметь большую энергию кинетическую, а доля молекул с большой кинетической энергией как раз и рассчитывается по распределению Максвелла. Если рассматривать смесь разных газов, то средние импульсы молекул каждого газа равны между собой. Допустим, в имеется смесь азота и водорода. Молекулы азота в 14 раз тяжелее молекул водорода. При равенстве средних импульсов mазVаз = mводVвод (m - масса, V - скорость) средняя скорость молекул водорода должна быть в 14 раз больше, чем у молекул азота. Пропустив частности, законы распределения молекул в газе можно распространить и на жидкость. Эйнштейн решил, что с точки зрения ньютоновой механики частицы, участвующие в броуновском движении, можно рассматривать как очень крупные молекулы - главное ведь не структура, а масса и скорость. Тогда средний импульс броуновских частиц, должен быть таким же, как в молекулах газа или жидкости. И наоборот - зная средний импульс частиц, можно определить импульсы молекул. Жан Перрен экспериментально проверил гипотезу Эйнштейна.

Для этого он изготовил очень мелкие шарики одинаковой массы и рассмотрел под микроскопом распределение этих шариков по высоте. Количество шариков в зависимости от высоты относительно предметного столика микроскопа менялось по тому же закону (распределению Максвелла), что и давление воздуха в зависимости от высоты над уровнем моря, только вертикальный масштаб был иной, изменённый пропорционально разнице в массах молекул газов воздуха и броуновских частиц. Такое совпадение не может быть случайностью.

Оно говорит о том, что молекулы обладают массой и импульсом, и, более того, теория броуновского движения позволяет рассчитать массу молекул следовательно, и атомов. В простейшие формулы кинетической теории газов входит N, число Авогадро (количество молекул газа в метрическом объёме), например Давление Объём = 2/3 N Средняя кинетическая энергия молекулы Таким образом, зная массу молекулы, можно рассчитать число Авогадро (Перрен сделал это с 12% ошибкой), и, далее, размеры молекул. Приблизительно в это же время Резерфорд, исследуя число распадов атомов радиоактивных веществ в единицу времени, рассчитал число Авогадро совершенно иным методом и его результат оказался в соответствии с данными Перрена. Оказалось, что физические характеристики визуально ненаблюдаемых молекул и атомов могут быть измерены. «Увидеть» молекулы и атомы удалось довольно скоро - в 1912 г. Макс Лауэ получил дифракцию рентгеновских лучей на кристалле сернокислой меди. Таким образом, в начале ХХ в. атом становится физической реальностью. Ж. Перрен за свои эксперименты работы в области броуновского движения получил Нобелевскую премию 1908 г.

Планетарная модель атома Резерфорда

Резерфорд установил, что б-частицы являются ионами гелия. В 1909 г. он начал работу по рассеиванию б-частиц на золотой фольге и обнаружил странное явление - некоторые б-частицы отклонялись при этом на очень большие углы. К этому времени размер атомов и межатомные промежутки в металлическом золоте были известны. Представьте себе определённое количество шариков, висящих в пространстве определённого объёма. Будем стрелять по ним вслепую, наугад более мелкими упругими шариками. Очевидно, что хороший математик, зная, сколько снарядов прошло мимо, а сколько отразилось от мишеней, сможет рассчитать размер мишеней. Помощникам Резерфорда удалось собрать статистику рассеиваний для 150 000 «выстрелов». На этих абсолютно надёжных данных Резерфорд рассчитал размер мишеней, и оказалось, что они в тысячи раз меньше размера атома. Отсюда последовал вывод: атом имеет очень маленькое массивное положительно заряженное ядро и рыхлую внешнюю часть, образованную вращающимися вокруг ядра электронами. Тогда понятно, почему мишень так мала: б-частицы отражаются не от атома, а от ядра. Масса электрона почти в 8 000 раз меньше массы б-частицы, поэтому при столкновении её с электроном на периферии атома никакого сколько-нибудь заметного отклонения траектории б-частицы не произойдёт. Теория Резерфорда получила название «планетарной модели атома». Эта метафора очень удачна: электроны, подобно планетам Солнечной системы, вращаются на огромном по сравнению с их собственными размерами расстоянии от массивного ядра. Их связывает с ядром не сила тяготения, а сила притяжения разноименных зарядов. Однако электрон, вращающийся вокруг ядра, как и любое вращающееся тело, имеет угловое ускорение. Ускорение заряда порождает магнитное поле, которое тормозит его движение. Поэтому электрон, в отличие от планеты, при вращении должен постоянно терять скорость и, как следствие, упасть на ядро. Резерфорд выдвинул гипотезу планетарного атома в 1911 г., но она была молчаливо отвергнута научным сообществом. Так, например, крупнейший российский физик Лебедев, делая для журнала «Нива» обзор успехов физических наук за 1911 г., даже не упомянул про планетарную модель атома.

Излучение абсолютно чёрного тела и кванты Планка

Слово “квант” впервые произнёс Макс Планк в 1900 г. До этого Планк четыре года безуспешно пытался решить проблему излучения абсолютно чёрного тела. Суть её в следующем. Свет, как и прочие электромагнитные волны, излучается по двум причинам: во-первых, потому, что тело-излучатель нагрето и светится “само из себя”, во-вторых, потому, что оно отражает свет, падающий извне. Последнее неинтересно. Придумаем некоторое идеальное тело, которое ничего не отражает, а только излучает под влиянием внутреннего тепла и назовем его абсолютно чёрным телом. Это - идеальная модель для исследования процессов электромагнитного излучения. К началу ХХ в. известно про него следующее: экспериментально получены эмпирические кривые распределения энергии по частотам в зависимости от температуры тела; вся энергия излучения (по всем частотам интегрально) пропорциональна четвёртой степени температуры (закон Стефана-Больцмана): Eобщ= уT4, где у - постоянная Стефана-Больцмана; Длина волны, соответствующая пику кривой распределения энергии, Емакс, делённая на температуру, есть постоянная величина (закон смещения Вина). Теперь дело за малым: найти формулу, описывающую ход эмпирических кривых. Представим абсолютно чёрное тело в виде дырки, полости внутри закрытого сосуда. В этом объёме находятся электромагнитные волны, которые отражаются от стенок, испускаются и поглощаются стенками. Получим что-то вроде пространства, заполненного стоячими волнами - такие появляются в чашке чая, если чашку поставить на столик быстро движущегося поезда. В чашке с чаем они возникнут от толчков с определённой, постоянной частотой. А каковы частоты колебаний электронных осцилляторов? (что-то вроде шарика на пружинке (от лат. oscillo -- качаюсь)) - самые разные. Но чтобы в сосуде образовались стационарные стоячие волны (а они обязательно должны установиться согласно классической теории), необходимо, чтобы расстояние между стенками сосуда равнялось половине длины волны, или двум половинам, или трём и т.д. По законам статистической физики, каждая из таких волн, как длинных, так и коротеньких, должна иметь в среднем одну и ту же энергию. Но длинных волн в сосуде поместится мало, а короткие можно мельчить до бесконечности.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать