Концепции современного естествознания
p align="left">

Вероятностное обоснование уравнения Шрёдингера (Макс Борн)

Если электрон - волна, то что колеблется? Макс Борн в 1928 г. ответил на этот вопрос. Волновая функция не есть колебание материального тела, это функция, определяющая вероятность нахождения электрона в данной точке (эту вероятность задаёт квадрат амплитуды волновой функции). Координаты частицы невозможно определить точно. Можно лишь рассчитать вероятность нахождения её в данный момент времени в данной точке пространства - и ничего более. Уравнения, определяющие эту вероятность, записываются волновыми функциями. Вероятностное истолкование волнового уравнения получило название “копенгагенская интерпретация” (хотя сам Борн работал в Геттингене). Существовали и другие версии осмысления волновой функции, например, “брюссельская интерпретация”, но копенгагенская является ведущей. Под “копенгагенской интерпретацией” понимается также триединство “объект-прибор-наблюдатель”. Эта философская позиция, которую развивал Бор, подразумевала, что квантовая физика изучает не только внешний объект, наблюдатель и прибор “встроены в теорию”. Предполагалось, что в зависимости от того, какой прибор выбирает наблюдатель, такую ипостась частицы - волновую или корпускулярную - удаётся зарегистрировать. Вместе, одновременно, обе характеристики получить нельзя. Является ли электрон волной или корпускулой - зависит от наблюдателя. От субъективизма в физике удаётся избавиться, если принять, что вероятность -характеристика состояния, имеющая чисто физические причины. Такая философская позиция у современных физиков является ведущей.«Анализируя степень обоснованности положения о вероятностной интерпретации волновой функции, отметим, что в квантовой механике две основные задачи -- нахождение характеристик стационарного состояния атома, т. е. энергии, квантовых чисел, о которых пойдет речь в следующем разделе, и расчет вероятностей ядерных реакций как функций энергий и углов рассеяния частиц. Решение первой задачи, основной в атомной физике, не требует интерпретации волновой функции, так как энергия и квантовые числа физической системы находятся как условия, при которых уравнение Шредингера имеет решение. В основе постановки второй задачи, относящейся к ядерной физике, лежит вероятностная интерпретация волновой функции. Многие такие задачи решены и блестяще согласуются с экспериментом. В настоящее время нет экспериментальных указаний против вероятностной интерпретации Борна, так же как нет и альтернативной трактовки волновой функции.» (Дубовой, 1979).Для иллюстрации объективности вероятностных процессов можно использовать феномен туннельного эффекта. Представьте себе одинаковые рюмки, стоящие на горизонтальной крышке стола. В одной из рюмок (назовём её А-рюмка) находится горошина. Чтобы переместить её в другую рюмку, нужно сначала затратить энергию на подъём горошины, а затем эту энергию получить обратно. В итоге энергетический баланс будет нулевым.Ситуацию, в которой находится горошина, называют наличием потенциального барьера. В нашем мире горошина никогда не сможет переместиться из одной рюмки в другую - она никогда не получит нужной энергии для преодоления потенциального барьера.Но в квантовом мире микрочастица может выйти за пределы потенциального барьера, если он не очень широк - пси-волна не полностью поглощается стенками узкого барьера, по другую его сторону ослабленная волна всё же имеет ненулевое значение. Пси-волна - функция вероятности нахождения частицы в данной точек пространства. Это значит, что вероятность обнаружения частицы на дне Б-рюмки хоть маленькая, да существует. Главное, чтобы при этом не нарушился закон сохранения энергии.Это - основа теории б-распада, созданной Гамовым в 1928 г. б-частицы, находящиеся в ядре атома, отделены от внешнего мира потенциальным барьером. У радия и некоторых других элементов он не очень широк и б-частицы имеют мизерный шанс совершить побег. В препарате радия с большим числом атомов такая вероятность превращается в закономерность.Кто не понял физической сути туннельного эффекта, должен сосредоточиться на главном - б-распад осуществляется без наблюдателя и его приборов, вероятностные процессы здесь не есть следствие погрешности эксперимента.Так, начиная с 1913, вероятностный детерминизм непрерывно расширял свои владения, пока не стал главным принципом квантовой физики. Полное осознание его господства наступило довольно поздно. Так, Борн получил Нобелевскую премию только в 1954 г. В физике макромира жёсткий детерминизм остаётся господствующим. В теории вероятности существует закон больших чисел Чебышева, который можно сформулировать приблизительно следующим образом: чем больше объём статистического материала, тем меньше погрешностей в предсказании обобщённых результатов эксперимента. Если выборка стремится к бесконечности, то погрешность становится бесконечно малой. Законы статистических распределений обычно называют просто статистиками. Поведение ансамблей элементарных частиц описывается другими формулами - это статистика Ферми-Дирака для частиц вещества (фермионов) - электронов, протонов, нейтрино и т.д. и статистика Бозе-Эйнштейна для квантов полей (бозонов) - например, для квантов света. В квантовой физике они играют огромную роль.

Открытие нейтрона, электрона, мю-мезона

В 1932 г. сотрудник Резерфорда Д. Чэдвик открыл нейтрон, точнее, электрически нейтральный объект с массой, приблизительно равной массе протона. Существование подобного объекта не нарушало законов атомной физики, более того, он был предсказан Резерфордом ещё в 1920 г. Действительно, если ядро атома гелия, например, имеет массу, равную четырём массам протона, а заряд, равный двум зарядам протона, следовательно, в ядре должно существовать ещё нечто, тяжёлое и нейтральное. Но это нечто можно было собрать из существующих на то время деталей конструктора. Резерфорд выдвинул на эту роль гипотетический особо тесный комплекс протон+электрон. И это было совершенно естественно - раз в процессе в-распада из ядра вылетают электроны, значит их там должно быть много. Правда, уже в 1932 г. Д.Д. Иваненко и Э. Майорана независимо друг от друга предложили модель ядра, состоящую из протонов и нейтронов. Только два года спустя Чэдвик пришёл к выводу, что открытый им объект - новая элементарная частица. Признать это было психологически сложно - физики не хотели новых частиц, не хотели перестраивать с таким трудом созданную теорию атома, казавшегося таким простым и прекрасным. Помимо нейтрона, к началу 30-х годов были ещё две гипотетических частицы, получивших впоследствии названия "нейтрино" и "позитрон". Нейтрино придумал Паули для объяснения непонятных явлений при в-распаде радиоактивных веществ. Почему скорости электронов, вылетающих из одинаковых атомов, разные? Паули предположил, что при в-распаде атом испускает две частицы и суммарная их энергия постоянна, а между частицами она делится достаточно произвольно. Вторая частица электрически нейтральна, поэтому она не регистрируется обычными приборами и не вступает во взаимодействие с атомами. Он считал, что если данная частица существует, то при его жизни её не обнаружат - необходим феноменальный прогресс экспериментальной техники для регистрации нейтрино. В оценке скорости прогресса он ошибся и на три года пережил срок экспериментального доказательства существования нейтрино. Положительно заряженный электрон можно было получить из уравнений Дирака, однако мало кто думал, что это решение имеет какой-либо физический смысл.

Теория сильного взаимодействия. Сильное ядерное взаимодействие

Цветовое взаимодействие, ядерное взаимодействие -- одно из четырёх фундаментальных взаимодействий в физике. Сильное взаимодействие действует в масштабах атомных ядер и меньше, отвечая за притяжение между нуклонами в ядрах и между кварками в адронах. В сильном взаимодействии участвуют кварки и глюоны, а также составленные из них элементарные частицы, называемые адронами. В 1934 г. Хидэки Юкава предложил гипотезу сильного взаимодействия. Если протоны в ядре атома, испытывая мощнейшее электрическое отталкивание, не разлетаются, то значит, их удерживают более мощные силы, чем электромагнитные. Юкава вводит новое поле, в котором силы действуют на очень коротком расстоянии. Он рассчитал, что чем массивней квант поля, тем короче расстояние, на которое оно распространяется. Так как кванты электромагнитного поля - фотоны - не имеют массы, электромагнитные воздействия распространяются на бесконечные расстояния. Короткодействующее "сильное" поле Юкавы тоже квантуется, и масса кванта должна быть меньше массы протона, но больше массы электрона. Гипотетическая частица Юкавы получила название мезон (мезо- греч. - средне- промежуточной).Частица, похожая на мезон Юкавы, была обнаружена при исследовании в космических лучей, в 1937 г., но позже оказалось, что это не квант сильного поля.

Это была первая частица, существование которой не было предсказано никакой теорией и даже не могло быть объяснено никакой теорией. "Правильный" мезон Юкавы (точнее один из трёх мезонов, квантов сильного поля с разными электрическими зарядами) был обнаружен в 1947 г. В дальнейшем он был назван р-мезоном, сокращённо - пионом, а "лжемезон" - м-мезоном (мюоном). После него были открыты более сотни "ненужных" частиц. Сильн.взаим-я в высокоэнергетич. Реакциях: Имеется целый ряд высокоэнергетических процессов столкновения адронов, в которых отсутствует жёсткий масштаб, из-за чего вычисления по теории возмущений в рамках КХД перестают быть надёжными. Среди таких реакций -- полные сечения столкновения адронов, упругое рассеяние адронов на небольшие углы, дифракционные процессы.

С точки зрения кинематики, в таких реакциях достаточно большой является только полная энергия сталкивающихся частиц в их системе покоя, но не переданный импульс. Начиная с 1960-х годов, основные свойства таких реакций успешно описываются феноменологическим подходом, основанным на теории Редже. В рамках этой теории, высокоэнергетическое рассеяние адронов происходит за счёт обмена некоторыми составными объектами -- реджеонами. Наиболее важным реджеоном в этой теории является померен -- единственный реджеон, вклад которого в сечение рассеяния не уменьшается с энергией. В 1970-х годах оказалось, что многие свойства реджеонов можно вывести и из квантовой хромодинамики.

Текущее состояние в теории сильных взаимодействий: КХД -- общепринятая теория сильных взаимодействий.

Во-первых, в тех областях, где её численные предсказания надёжны, они хорошо согласуются с опытом.

Во-вторых, в ней на смену сотням «элементарных» кирпичиков материи (адронов) с запутанными «правилами игры» приходят 6 кварков с единственным дополнительным квантовым числом. Все свойства унитарной симметрии адронов, все правила «адронной химии» автоматически следуют из взаимодействия кварков.

В-третьих, КХД построена в согласии с общими требованиями квантовой теории поля, в частности, она перенормируема. Поскольку сильные взаимодействия в КХД описываются на основе калибровочного подхода, есть надежда на то, что удастся объединить сильное взаимодействие с электрослабым.

Классификация ЭЧ

К настоящему времени число зарегистрированных частиц и античастиц приближается к четырём сотням. Существует две относительно смежные классификации элементарных частиц. Во-первых, это деление частиц на фермионы (частицы вещества) и бозоны (кванты полей). Выше уже упоминалось, что фермионы подчиняются запрету Паули и имеют дробный спин, в то время как на бозоны запрет Паули не распространяется, и они имеют целочисленные спины.Другая система частиц - деление их на лёгкие (лептоны) и тяжёлые (адроны). Тяжёлые частицы способны к сильному взаимодействию (т.е. их притягивает сильное "ядерное" поле), а легкие частицы - нет. Впоследствии оказалось, что лептоны - истинные элементарные частицы, которые не имеют внутренней структуры, в то время как адроны состоят из более мелких частиц - кварков.Тяжёлые лептоны способны распадаться с образованием стабильных лептонов - электрона и нейтрино. Также стабильными являются протоны и нейтроны (последние являются "вечными частицами", пока они заточены в ядрах атомов; свободные нейтроны подвержены самопроизвольному распаду). Протоны и нейтроны имеют общее название нуклоны (от латинского нуклеус - ядро). Со времен Ньютона и Лейбница под понятием "элементарная частица" подразумевался бесструктурный точечный объект. По мере накопления знаний о природе материи на протяжении только последних ста лет элементарными частицами считали сначала атомы, потом ядра, адроны. К 60-м годам нашего века число элементарных частиц достигло сотни. Возникли сомнения в их "элементарности". Казалось, что природа не может быть столь расточительной. Все разнообразие этих частиц попытались объяснить наличием меньшего количества унифицированных элементарных объектов. На современном уровне знаний элементарными считают 12 частиц и 12 античастиц или, как говорят, ароматов, а также 12 переносчиков взаимодействий. Все элементарные частицы - фермионы (их спин s=1/2h), а все переносчики взаимодействия - бозоны (s=1h). В свободном состоянии наблюдается только 6 (из 12) элементарных частиц. Это - лептоны: электрон e- , мюон м- , таон ф- , нейтрино электронное нe, нейтрино мюонное нм, и нейтрино таонное нф. Антинейтрино и положительно заряженные лептоны считаются античастицами. Лептоны - слабо взаимодействующие частицы. Остальные 6 элементарных частиц - кварки - существуют только в связанном состоянии. Это относится и к 6 антикваркам. Кварки и антикварки - частицы, обладающие сильным взаимодействием.

Кварковая теория

Решительно упростить систему элементарных частиц удалось М. Гелл-Ману. В середине 60-х годов он выдвинул гипотезу, согласно которой адроны являются комбинацией более лёгких частиц - кварков, причём мезоны образованы парой кварк-антикварк, а барионы - тремя кварками. Кварки обладают дробным электрическим зарядом: +2/3 или -1/3 заряда протона (соответственно, антикварки - -2/3 и +1/3) и спином 1/2. К 80 годам "просвечивание" барионов потоками электронов или нейтрино подтвердило структурную неоднородность протонов и нейтронов - они рассеивали падающие частицы так, как будто состояли из трёх отдельных мишеней. Хотя получить отдельные кварки не удалось и к настоящему времени, никто уже не сомневается в их существовании и справедливости Стандартной модели - так называется кварковая теория вещества. Наш мир состоит из двух кварков - "верхнего" и "нижнего" - и двух лептонов - электрона и электронного нейтрино. В столкновениях ускоренных частиц высоких энергий рождаются два новых кварка - "странный" и "очарованный" и два лептона - имеющий электрический заряд мюон и мюонное нейтрино. При самых высоких энергиях сталкивающихся частиц, которые можно получить на современных ускорителях, появляются "истинный" и "красивый" (другой вариант названия t- и b-кварков - "вершинный" - top и "придонный" - bottom) кварки, заряженный тау-лептон и таонное нейтрино. Шесть разных состояний кварков называют ароматами. Кварки участвуют в особом типе сильного взаимодействия, которое создаётся не двумя, а тремя разными зарядами, или, как обычно говорят, кварки могут иметь один из трёх цветов. Цвет кварка никак не связан с ароматом - любой из кварков может иметь любой цвет.

Три разных цвета порождают поле, которое связывает кварки так тесно, что отделить один кварк от двух других невозможно. Тройка кварков разных цветов и есть адрон. Теперь понятен метафорический смысл слова "цвет" - человеческий глаз имеет три типа колбочек, различающих три цвета. Три одинаковых по интенсивности цвета создают белый цвет. Часто говорят, что адроны существуют только в белых комбинациях. Но два цвета не могут создать белую комбинацию. Как же образуются мезоны? Антикварки обладают антицветом. Мезон сформирован парой кварк-антикварк, он бесцветен. Стабильных мезонов не бывает, их жизнь не превышает миллионных долей секунды. Перемешивая шесть кварков и антикварков в комбинациях по три и по два и учитывая лептоны, получаем почти весь набор известных элементарных частиц.

Почти - потому что в этой теории появляются глюоны - особые кванты сильного взаимодействия, определяемого тремя зарядами (цветами), связывающего кварки в адроны. Глюоны существуют в девяти модификациях. Возникает вопрос - а что же дальше? Если мы создадим более мощные ускорители, то получим следующую пару кварков и пару лептонов - и так далее, как в сказке Андерсена "Горшок каши"? Не исключён, хотя и маловероятен, ещё один энергетический уровень, "населённый" своими кварками и лептонами, но больше их быть не может.

Слабое взаимодействие и несохранение чётности при слабых взаимодействиях

Слабое взаимодействие Физика признаёт существование четырёх фундаментальных взаимодействий - тяготения (гравитации), электромагнитных сил, сильного и слабого взаимодействий. Что есть слабое взаимодействие? Это сила, которая ничего не притягивает и ничего не отталкивает. Она превращает одну частицу в другую. Если при этом выделяется энергия, то она должна выразиться в каком-то действии на другие частицы. В данном случае она тратится на порождение новых частиц, которые разлетаются с большой скоростью. История слабого взаимодействия начинается в 30-е годы, когда Э. Ферми разрабатывал теорию в-распада. Одиночный нейтрон, "вылущенный" из ядра, в среднем за 13,5 минут распадается на протон, электрон и антинейтрино. Нейтрон, заключённый в ядре, не распадается. Для того, чтобы объяснить это явление, приходится вводить особую силу - гравитация, электричество и сильное взаимодействие тут не при чём. Есть процессы распада частиц, определяемых сильным взаимодействием, но они протекают за 10-23 сек; распады, обусловленные электромагнитным действием, протекают в тысячу раз медленнее. Чудовищная длительность квантовых процессов - от миллионных долей секунды и более - подразумевает наличие очень слабых сил, отсюда и название. Слабое поле действует на расстояниях гораздо меньших, чем сильное. Характерной особенностью слабых процессов будем считать распад частицы на три компонента, а не на два. Сейчас мы знаем, что сначала частица распадается на две, одна из которых является квантом слабого поля, а потом этот квант распадается ещё на две. Некоторые частицы способны участвовать в сильном взаимодействии, некоторые - в электромагнитном; слабое взаимодействие, возможно, характерно для всех известных на сей момент фермионов. Оно может менять ароматы кварков, превращая, например, u-кварк в d-кварк и наоборот, или аналоги ароматов у лептонов, делая из электрона нейтрино и наоборот. Несохранение чётности в слабых взаимодействиях Интуитивно понятно, что физические законы справа от наблюдателя должны выполнятся в точности так же, как и слева. В физическом мире царит симметрия. Так же очевидно, что все физические процессы, связанные с положительными электрическими зарядами, должны быть аналогичны процессам, связанным с зарядами отрицательными, т. е., если всюду поменять плюс на минус и наоборот, наш мир не должен измениться. Для любой частицы известна античастица (для нейтральных, например, нейтрона и нейтрино - тоже). Самое загадочное и интригующее свойство слабых взаимодействий - то, что для частиц связанные с ним процессы протекают чуть-чуть иначе, чем для античастиц. Например, нейтральная частица К0L может распадаться с образованием либо электрона, либо позитрона по схемам К0L > е+ + р- + не и К0L > е- + р+ + не, однако первый процесс протекает почти в одну и семь тысячных раз чаще, чем второй. Симметрия нарушена совсем незначительно, но вполне достоверно. Следует подчеркнуть, что симметрия (назовём чётностью некоторые типы симетрий), нарушается только в процессах слабого взаимодействия - может быть, всех. Считается, что подобного лёгкого нарушения оказалось достаточно. В начале мира, в первые секунды после Большого взрыва, превращения, связанные со слабой силой привели к тому, что частиц стало на несколько миллионных больше, чем античастиц.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать