Концепции современного естествознания
p align="left">

Галактики, скопления галактик и крупномасштабная структура Вселенной

Не так давно словом "галактика" обозначалась крупная звёздная система. Помимо звёзд в ней существует межзвёздный газ и космическая пыль. Галактики различались по форме - делились на спиральные, шаровые, эллиптические и прочие. В настоящее время представления о галактиках решительно меняются. Звёзды, газ и пыль - то, что далее будем называть «видимое вещество» - составляют незначительную долю от общей массы галактики. Основным в ней является «тёмное вещество». «Тёмное вещество» существует, но мы не знаем, что это такое. Ограничимся обзором наиболее изученных галактик вроде той, в которой обитаем мы, а именно - спиральных. Спиральные галактики обычно имеют два рукава - изогнутые зоны наибольшего скопления звёзд. Если смотреть на спираль в профиль, то она предстанет в виде полоски с шаровидным утолщением в центре - балджем. Понятия «балдж» и «ядро галактики» во многом совпадают. В центре балджа находится чёрная дыра порядка сотни тысяч солнечных масс и более. Масса чёрной дыры связана с размерами балджа. И, наконец, галактику окружает сферическое гало из звёздных скоплениий более низкого порядка.По самой оси балджа расположены молодые горячие звёзды. Газ и пыль здесь неоднородны, образуют значительные скопления, особенно плотные в рукавах. В этих скоплениях приблизительно одновременно возникает множество звёзд. Процессы образования новых звёзд продолжаются здесь до сих пор. Межзвёздный газ охлаждается за счёт излучения и смещается к центру галактики, где излучение чёрной дыры балджа (точнее, вещества, падающего на чёрную дыру) вновь его нагревает. Галактический газ образует холодные струи, направленные к «нагревателю» - центру галактики и горячие струи, уходящие к периферии. Эллиптические галактики, в отличие от спиральных, представляют из себя один огромный балдж. Соответственно этому, чёрная дыра в его центре в тысячи раз массивней тех, что находятся в центрах спиральных галактик. Вещество - газ и пыль, падая на чёрную дыру, порождают излучение в самых разных диапазонах. Считается, что квазары - это светящиеся диски газа, засасыва-емого массивной чёрной дырой ядра галактики. Жизнь ядра галактики может быть очень активной, иногда оно взрывается с выделением энергии, в миллионы раз превышающей энергию вспышек сверхновых. В пересечённых спиральных галактиках падающее на центральную чёрную дыру вещество образует эллиптическую воронку - «бар»; рукава галактики выходят не из балджа, а из бара. В спиралях формируются отдельные плотные скопления звёзд, хорошо заметные на фотографиях ближних галактик, а также скопления газа и пыли. В целом приходится признавать, что видимое вещество в галактиках распределено крайне неодно-родно. Галактика значительно шире узкого диска ярких звёзд. Старые красные звёзды образуют слабо светящуюся «шубу» кнаружи от яркого диска, образованного более молодыми звёздами. Она получила название "толстый диск". Крупные галактики часто имеют мелкие галактики-спутники. Таковыми для нашей Галактики являются Большое и Малое Магеллановы облака. Галактики образуют скопления. В Местном скоплении галактик нашим ближайшим соседом является Туманность Андромеды. В целом скопления галактик образуют ячеистую структуру. Внутри ячеек пространство практически пусто. Галактики, как и звёзды, имеют свою историю, изучение которой только начинается. Считается, что первичные галактики, сформировавшиеся в первые сотни миллионов лет после Большого Взрыва, были карликовыми. В настоящее время, когда телескопы и другие астрофизические приборы стало возможным вывести в космос, астрономы впервые смогли увидеть очень далёкие галактики, свет от которых пришёл к нам более чем за 10 млрд. лет, то есть звёздное население очень ранней Вселенной. В 2004 г. благодаря новому оборудованию на телескопе «Хаббл» были получены снимки объектов в момент, соответствующий приблизительно 0,5 млрд. лет после Большого Взрыва. Первая из «древних» галактик, которую удалось сфотографировать таким образом, в 200 раз меньше нашей нынешней.

Строение земной коры. Астеносфера, мантия, ядро

Во-первых, земная кора принципиально неоднородной. Тонкая океаническая кора двуслойна, состоит из поверхностного чехла осадочных пород, накрывающих базальты, тогда как толстая материковая кора трёхслойна - под осадочными породами находится мощный слой гранитов, подстилаемый базальтами. Базальты несколько тяжелее гранитов, поэтому их "естественное место" - под гранитами. Вещество, из которого образовалась Земля, по-видимому, первоначально было относительно однородным. В дальнейшем более тяжёлые элементы мигрировали вниз, более лёгкие - наверх. Этот процесс продолжается сейчас и будет протекать ещё не менее миллиарда лет. Под корой находится слой глубинного вещества, нагретого до температуры свыше 1 000°С и находящегося в состоянии, близком к плавлению - астеносфера. Своей механической и фазовой неустойчивостью астеносфера отличается от более прочной, но пронизанной разломами мантии, лежащей под астеносферой. Зона перехода астеносферы в литосферу называется зоной Мохоровичича («зона Мохо», ударение на второе "о"). Она прослеживается на глубине 15 - 20 км под океанами и 40-80 км - под материками. Но есть места, где океаническая кора исключительно тонка и гоячая астеносфера выходит к самой её поверхности, формируя серединно-океанические хребты. Оказалось, что Землю опоясывает непрерывная цепь горных хребтов, протянувшаяся на 80 тыс. км, что вдвое превышает длину экватора. У края континентов, могут формироваться глубоководные желоба, где, наоборот, океаническая кора может уходить глубоко вниз. ???Основная идея «раннего мобилизма» была следующей - горячая астеносфера в зоне серединно-океанических хребтов изливается наружу, выплавляя новую океаническую кору. Океанические базальты медленно движутся от места своего образования к материкам, где ломаются и косо погружаются на глубины порядка сотен километров, где вновь расплавляются и смешиваются с веществом мантии. Будем считать, что базальты - исходные породы, которые возникают из вещества астеносферы. В тех местах, где океаническая плита коробится и частично плавится, более лёгкие компоненты базальтов превращаются в гранит и формируют новые участки материковой коры. Что касается дрейфа океанической коры, то здесь все доказательства налицо. Во-первых, в зонах разломов океанического дна, сопровождающих серединно-океанические хребты, происходит излияние расплавленного вещества сопровождаемое выбросом в воду большого количества сероводорода, и, как следствие, окрашивающего воду в чёрный цвет. Эти места получили название «чёрных курильщиков». Во-вторых, осадочный слой у серединно-океанических хребтов очень тонок и молод. Чем дальше к материкам, тем он, как правило, толще и старше и почти никогда не бывает древнее 200 млн. лет. В-третьих, намагниченность пород базальтового слоя показывает полное сходство с теорией. Дело в том, что металлические руды намагничены так, как были сориентированы магнитные силовые линии Земли в момент их кристаллизации. Но магнитные полюса медленно перемещаются, а также с периодом порядка миллиона лет меняют своё направление на противоположное. Если образование новых базальтов происходило постоянно, то самые молодые должны быть намагничены «на полюс», те, что дальше от оси хребта - противоположным образом, те, что еще дальше - по современным им направлениям полюсов. В-четвёртых, в местах предполагаемого подползания океанической плиты под материковую с нёё должен соскребаться верхний слой, происходить нагрев и расплавление базальтов. Если посмотреть на карту Тихого океана, легко заметить цепочки вулканических островов, формирующих Огненный пояс. В-пятых, в настоящее время методами спутниковой навигации доказано движение континентальных плит со скоростями несколько сантиметров в год. Движется не только океаническая кора. Материки тоже могут раскалываться. Зона разлома и в море, и на суше называется рифтом, а засыпаемый осадками провал - грабеном (хотя не все делают различие между этими терминами. Рифт - это огромная, обычно прямолинейная трещина, простирающаяся на сотни километров. Собственно зона расширения, не ров, а начальная точка расхождения плит, носит название зоны спрединга (spread - англ. растяжение, расширение). Классический пример рифтогенеза - наблюдающийся в настоящее время раскол африканского материка. Долгое время одним из самых употребимых слов в общей геологии были термины "платформа" и "геосинклиналь". Платформа - это тектонические косная часть коры, нечто лишённое или почти лишённое изменчивости. Геосинклинальные зоны по краям платформ, наоборот, коробятся, вздымаются, опускаются, трескаются - находятся в непрерывном движении. Откуда берётся чудовищная сила, разрывающая на части Африку или дно Атлантического океана? Ясно, что недра Земли горячие, но что их нагревает? Современная геофизика рассматривает вопрос о дифференциации вещества как основном источнике энергии. Земля образовалась около 4,6 млрд. лет назад из относительно однородного вещества, вобрав в себя огромное количество метеоритных тел. Далее тяжёлые элементы медленно опускались вниз, к центру планеты, а лёгкие всплывали наверх. Эти процессы протекали и протекают поныне с выделением тепловой энергии, которая приводит к разогреву недр. Будем считать, что через 2 миллиарда лет после образования Земли внутри неё оформилось тяжёлое ядро, предположительно состоящее из железа. Приблизительно к этому времени на поверхности Земли появились лёгкие блоки, содержащие больше кремния и алюминия, но меньше магния, чем подстилающая их мантия. Они послужили ядрами формирования будущих континентов. Период ускоренного роста материковых плит заканчивается около полутора миллиардов лет назад. К настоящему времени сравнительно надёжно установлено, что внутри Земли имеется тяжёлое твёрдое ядро. Его окружает слой жидкого вещества нижней мантии. Средняя и верхняя мантия в целом являются твёрдыми, хотя в них могут двигаться струи более горячего вещества. Предполагается, что мантия приблизительно однородна по своему химическому составу, хотя наверняка разные её слои различаются по структуре.

Причины движения материков

Твёрдое вещество может быть кристаллическим, а может и аморфным, медленно меняющим свою форму под влиянием некоторого постоянного давления. Вещество мантии также аморфно, но, кроме того, разбито трещинами и неодинаково нагрето. Будем считать, что в жидкой оболочке ядра мантия теряет тяжелые атомы железа, никеля и им подобных элементов, которые оседают на твёрдое ядро. При их падении выделяется тепловая энергия. Облегчённые и разогретые слои мантии поднимаются вверх, уступая место более тяжёлым и холодным. Итак, движение мантии можно представить как движение очень вязкой жидкости под действием локального нагрева снизу. Это конвективное движение, обычное для более тёплых слоёв жидкости и газа, можно пронаблюдать в туристическом котелке, где кипятят воду, содержащую мелкие взвешенные частицы. Они поднимаются вверх от центра вместе со струями горячей тёплой воды, движутся к стенкам, где вода охлаждается, становится тяжелее, опускается и течёт к центру, замещая поднимающуюся тёплую воду. Нагревая воду на костре или конфорке газовой плиты, можно добиться того, что столб поднимающейся воды будет один (см. схему). Назовём весь объём воды, вовлечённый в движение этой единственной восходящёй струёй, конвективной ячейкой. В 70-е годы акад. Сорохтин разработал гипотезу, согласно которой на Земле с периодом около 200 млн. лет происходит смена циркуляции мантийного вещества - переход с двух конвективных ячеек к одной и обратно. Когда конвективная ячейка является единственной, вынос тепла задерживается и в разогретых недрах формируется вторая ячейка (не всегда она направлена в противоположную сторону). С появлением второй ячейки мантия быстро остывает и возвращается к движению в одной ячейке. В фазе с двумя конвективными ячейками на поверхности Земли идёт процесс горообразования, материки, под которыми возник столб восходящего горячего мантийного вещества (плюм), раскалываются и между ними возникает новый океан. В некоторых случаях в зоне рифта на поверхность изливаются миллионы кубических километров лавы, формируя характерные ландшафты. Если ячейка одна, то материки собираются у столба погружающегося вещества, в зоне субдукции, так же, как предметы, плавающие в ванне, собираются у воронки слива. Тектоническая активность подавлена, горы разрушаются, выветриваются, материковые породы выносятся в океан и формируют обширные мелководные моря. Это чередование периодов горообразования и тектонического покоя было известно геологам и раньше, их известно около 20. Ныне мы должны жить над мантией, циркулирующей в двух конвективных ячейках, в период горообразования, который называется альпийским, а предыдущий - герцинским. Однако простые конвективные модели, вроде модели Сорохтина, ныне должны быть серьёзно модифицированы. Методы сейсмического зондирования стали настолько совершенными, что позволяют создать карту глубинных потоков разогретого вещества, и она оказывается гораздо более сложной, чем это представлялось 30 лет назад. В первую очередь, это касактся включения в геодинамическую картину плюмов - локальных восходящих потоков, расположенных в стороне от осей спрединга. Выход плюма к поверхности часто называют "горячей точкой". Классический пример плюма - "горячая точка", формирующая Гавайские острова. Следует заметить также, что усложнилась и поверхностная мозаика континентальных плит. Если в 70-х годах геофизики оперировали 6 основными плитами, то теперь их около 80.

Классическая термодинамика: понятие энтропии и второе начало термодинамики

Термодинамика - судя по названию - должна изучать потоки тепла. Первым важным шагом на этом пути было исследование цикла Карно. Сади Карно опубликовал научный труд, в котором он анализировал работу идеальной тепловой машины. Допустим, перед нами цилиндр с поршнем, наполненный холодным газом. Если газ нагреть, то он, расширяясь, будет толкать поршень. Чтобы машина могла работать непрерывно, необходимо вернуть поршень назад и повторить цикл.

Для этого необходимо либо выбросить горячий газ и впустить в цилиндр новый, холодный (как это делается в двигателе внутреннего сгорания), либо охладить прежний объём газа. В любом случае нас ожидает пренеприятнейшая процедура - механик тратит дорогое топливо, чтобы нагреть газ, но часть полученного тепла он вынужден выбросить в окружающую среду, чтобы машина смогла совершить следующий цикл. Таким образом, никакая тепловая машина не может обладать стопроцентным КПД (коэффициент полезного действия). Всю работу можно перевести в тепло, но не всё тепло - в работу. Реальный переход в современных тепловых машинах составляет 20-30%. Термодинамика как наука оформилась позже, в 50 - 60-е годы XIX в., в трудах Клаузиуса, У. Томсона, Максвелла, Джоуля. Наиболее важным её понятием стала энтропия, разработанная Клаузиусом в 1865 г. и обозначаемая буквой S (ДS=ДQ/T, где ДQ - тепло, переданное одним телом другому телу, а T - температура). С помощью энтропии можно было вычислять направление потоков тепла. Оно определяется фундаментальным принципом - вторым началом термодинамики, которое записывается так: ДS ? 0, что означает - энтропия не может уменьшаться. В частности, приняв этот постулат, можно доказать, что тепло никогда не перейдёт от менее нагретого тела к более нагретому - при этом уменьшилась бы энтропия. Закономерен вопрос - если есть второе начало термодинамики, то должно быть и первое?

Первым началом является закон сохранения энергии. Энтропия как мера хаоса В конце XIX в. Людвиг Больцман расширил границы термодинамики, введя новое определение энтропии: S = k ln W, где W - термодинамическая вероятность, k - постоянная Больцмана. Теперь второе начало из постулата превратилось в теорему, доказуемую методами теории вероятности. Теперь энтропию можно представлять как меру хаоса, беспорядка, а второе начало термодинамики следует читать так: беспорядок (неупорядоченность) со временем способен только возрастать, упорядоченность никогда не создаётся самопроизвольно.

Возникновение и эволюцию жизни на Земле всегда рассматривают как становление более сложного из более простого, а фундаментальный закон природы - второе начало термодинамики - запрещает подобные процессы. Долгое время физики и биологи старались не замечать этого противоречия.

В конце 40-х годов Э. Шрёдингер издал маленькую популярную книжку "Что такое жизнь с точки зрения физика", где попытался разрешить этот парадокс. В конечном счёте Шрёдингер приходит к выводу, что живые организмы извлекают из окружающей среды отрицательную энтропию. Как? - посредством питания. С этим тезисом не согласится ни один физиолог.

Термодинамика открытых систем

Второе начало термодинамики, безусловно, является абсолютным законом природы. Но в логических построениях физиков от Карно до Шрёдингера есть брешь. Существует особый класс термодинамических систем - открытые системы - в которых возникают локальные условия для появления упорядоченности. Открытые системы ещё называют потоковыми - в них действительно существует поток как некоторая математическая абстракция, но ничто не мешает нам представить её в виде вещественного потока некоторой материи или энергии. Представим себе классический резервуар, в который нечто вливается и из которого нечто выливается. Если энтропия того, что выливается больше, чем энтропия на входе, то что творится с энтропией резервуара? Она может понижаться, но так, чтобы её дефицит внутри покрывался приростом снаружи, на выходе. Второе начало термодинамики приводит к выравниванию температур и запрещает ситуацию, в которой два равномерно нагретых тела поделили бы тепло так, что одному достался бы жар, а другому - холод. Однако холодильник на кухне работает, нагревает решётку сзади и охлаждает камеру внутри! За счёт чего? Термодинамически рассуждая, за счёт разупорядочения потока, точнее - тока электрического, превращения направленного движения электронов (упорядоченность) в хаотическое движение молекул нагретого газа (беспорядок). Грубо говоря, в выделенном месте можно создать умеренный порядок, если в другом сотворить большой беспорядок. Потоковые системы такого рода обычно называют диссипативными (лат. dissipatio - рассеяние) - в них происходит разупорядочивание энергетических процессов. Для них характерны большие различия начального и конечного состояний потока, это сильно неравновесные системы. Внутри потоковой системы упорядоченность может возникать самопроизвольно. Представьте себе подушечку для иголок и обрывки ниток, оставшихся в ушках иголок. Они расположены хаотически. Мысленно подуйте на подушечку - и нитки расположатся упорядоченно, вдоль потока. Разумеется, термодинамика открытых систем работает не с подушечками, а с условиями минимизации некоторых математических функций. А много ли порядка надо для возникновения жизни? Фон Нейман рассчитал, что система, способная создавать своё подобие, проще говоря - размножаться, должна содержать не менее 10 000 элементов. И всё. Отдельные горячие головы предложили даже четвёртое начало термодинамики - "в сложной потоковой системе за достаточно большое время должна появиться жизнь". Разумеется, это уже не закон природы а декларация желаемого. Однако если в этой фразе слово "должна" заменить на "может", она будет выглядеть вполне пристойно. Обратим внимание на то, что здесь не оговаривается химизм субстрата жизни. Есть позиция, остроумно названная "водно-углеродным шовинизмом", т. е. утверждение, что живое существует только в виде углеродных соединений и только при наличии воды. Термодинамика этот тезис игнорирует.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать