Методы микробиологической диагностики
p align="left">Фазово-контрастная микроскопия позволяет изучать живые и неокрашенные объек-ты за счёт повышения их контрастности. При прохождении света через окрашенные объекты происходит изменение амплитуды световой волны, а при прохождении через неокрашен-ные -- фазы световой волны, что используют для получения высококонтрастного изображе-ния в фазово-контрастной (рис. 1-3) и интерференционной микроскопии. Для повышения контрастности фазовые кольца покрывают металлом, поглощающим прямой свет, не влияя на сдвиг фазы. В оптической системе микроскопа применяют специальный конденсор с револьвером диафрагм и центрирующим устройством; объективы заменяют на иммерсион-ные объективы-апохроматы.

Поляризационная микроскопия позволяет получать изображения неокрашенных ани-зотропных структур (например, коллагеновых волокон, миофибрилл или клеток микроорганиз-мов). Принцип метода основан на изучении объекта в свете, образованном двумя лучами, поля-ризованными во взаимно перпендикулярных плоскостях.

Интерференционная микроскопия объединяет принципы фазово-контрастной и поляри-зационной микроскопии. Метод применяют для получения контрастного трёхмерного изображе-ния неокрашенных объектов. Принцип метода основан на раздвоении светового потока в микро-скопе; один луч проходит через объект, другой -- мимо него. Оба луча соединяются в окуляре и интерферируют между собой.

Люминесцентная микроскопия. Метод основан на способности некоторых веществ светиться при воздействии коротковолнового излучения. При этом испускаемые световые волны длиннее волны, вызывающей свечение. Иными словами, флюоресцирующие объекты поглощают свет одной длины волны и излучают в другой области спектра (рис. 1-4). Например, если индуцирующее излучение синее, то образующееся свечение может быть красным или жёлтым. Эти вещества (флюоресцеин изоцианат, акридиновый оранжевый, родамин и др.) используют как флюоресцирующие красители для наблюдения флюоресцирующих (люминесцирующих) объектов. В люминесцентном микроскопе свет от источника (ртутная лампа сверхвысокого давления) проходит через два фильтра. Первый (синий) фильтр задерживает свет перед образцом и пропускает свет длины волны, возбуждающей флюоресценцию образца. Второй (жёлтый) задерживает синий свет, но пропускает жёлтый, красный, зелёный свет, излучаемый флюоресцирующим объектом и воспринимаемый глазом. Обычно исследуемые микроорганизмы окрашивают непосредственно либо с помощью AT или лектинов, помеченных флюорохромами. Препараты взаимодействуют с Аг или другими связывающими лиганд структурами объекта. Люминесцентная микроскопия нашла широкое применение для визуализации результатов иммунохимических реакций, основанных на специфическом взаимодействии меченных флюоресцирующими красителями AT с Аг изучаемого объекта. Варианты I иммунофлюоресцентных реакций представлены рис. 1-5 и 1-6.

Рис. 1-3. Схема фазово-контрастного

микроскопа

Электронная микроскопия

Теоретически разрешение просвечивающего элек-тронного микроскопа составляет 0,002 нм; реальное, разрешение современных микроскопов приближает-ся к 0,1 нм. На практике разрешение для биологических объектов достигает 2 нм.

Просвечивающий электронный микроскоп

(рис. 1-7) состоит из колонны, через которую в вакууме проходят электроны, излучаемые катодной нитью. Пучок электронов, фокусируемый кольцевыми магнитами, проходит через подготовленный образец. Характер рассеивания электронов зависит от плотности образца. Проходящие через образец электроны наблюдают на флюоресцирующем экране и регистриру-ют при помощи фотопластинки.

Сканирующий электронный микроскоп применяют для получения трёхмерного изоб-ражения поверхности исследуемого объекта.

Подготовка материала к микроскопии

В бактериологической практике микроскопически исследуют неокрашенные образцы (нативный материал) и окрашенные препараты (мазки или мазки-отпечатки), приготовленные из кли-нического материала или колоний выросших микроорганизмов.

Нативные препараты

Нативные препараты готовят для исследования живых неокрашенных бактерий. Наиболь-шее распространение получили метод висячей капли, микрокамеры с плотными сре-дами и негативные методы исследования живых бактерий. Для прижизненного ис-следования также часто применяются исследование в тёмном поле и фазово-контрастная микроскопия. Подобные приёмы часто используют для диагностики сифилиса и предварительной диагностики диарей, вызванных кампилобактерами, а также для определе-ния подвижности микроорганизмов.

Окрашенные препараты

Для приготовления окрашенных препаратов из исследуемого объекта готовят мазки и фиксируют их.

Отбор материала. Тампоны, содержащие микроорганизмы, прокатывают по предметному стеклу (рис. 1-8, А); с их помощью также готовят мазки из непрозрачных жидкостей, например взвеси испражнений (рис. 1-8, Б). Мазки из материалов со слизистой или грубой консистенцией готовят растиранием их между двумя предметными стёклами (рис. 1-9). Прозрачные жидкости (например, мочу или СМЖ) можно нанести в виде капли на предметное стекло (рис. 1-10, А), при этом границы капли желательно обвести маркёром. Лучшие результаты даёт предварительное центрифугирование; затем осадок наносят на стекло; если он густой, его можно распределить с помощью стеклянной па-лочки (рис. 1-10, Б).

Фиксация. В практической бактериологии наиболее распро-странена термическая фиксация (над пламенем горелки) -- метод грубый, но сохраняющий морфологию и отношение к кра-сителям у бактерий. Для более детального изучения структуры клеток применяют фиксирующие растворы, предотвращаю-щие ферментативный аутолиз бактерий и стабилизирующие мак-ромолекулы путём химического их сшивания. Для светооптической микроскопии используют формалин, спирты, глутаральдегид, жидкость Карнуа, ацетон, пары осмиевой кислоты и др. Мазки фиксируют, помещая их в раствор фиксатора или нано-ся фиксаж на мазок. Для электронной микроскопии применяют глутаральдегид и тетраоксид осмия.

Окрашивание. Стандартные красители, используемые для окраски бактерий, -- карболовый фуксин Циля, фуксин Пфайф-фера и метиленовый синий по Лёффлеру. Для получения более информативных результатов в светооптической микроскопии используют специальные и дифференцирующие методы окраски.

Специальные методы окраски бактерий. Наибольшее распространение нашли методы Грама и Циля-Нильсена (рис. 1-11).

Дифференцирующие методы обычно применяют для окрашивания различных морфологических структур.

Капсулы. Для окраски капсул бактерий применяют методы Хисса, Лейфсона и Антони; последний метод наиболее прост и включает окраску кристаллическим фиолетовым с последующей обработкой 20% водным раствором CuSO4.

Жгутики. Для окраски жгутиков предложены методы Лёффлера, Бейли, Грея и др. Для этих методов характерны первоначальное протравливание препарата [обычно растворами таннина, KAl(SO4)2, HgCl2] и последующая окраска (чаще карболовый фуксин Циля).

Споры. Окраску спор бактерий проводят после предварительной обработки их стенок. Наиболее прост метод Пешкова, включающий кипячение мазка с синькой Лёффлера на предметном стекле с последующей докраской нейтральным красным. Споры окрашиваются в синий цвет, вегетативные клетки -- в розовый.

Питательные среды для культивирования бактерий

Для выделения чистых культур патогенных бактерий применяют оптимальные для их роста питательные среды с фиксированным рН. Большинство бактерий способно расти на различных питательных средах; исключение составляют хламидии и риккетсии, не растущие in vitro вне клеточных культур. Используемая среда должна содержать

-
вещества, утилизируемые бактериями для различных биосинтетических процессов.

Универсальные источники азота и углерода -- бел- ковые гидролизаты (содержат полный набор аминокис- лот), пептиды и пептоны. Универсальные источники
витаминов и микроэлементов -- экстракты белков жи-
вотного или растительного происхождения и белковые гидролизаты.

рН среды. В некоторых случаях жизнедеятельность
бактерий сопровождается сдвигом рН в кислую или
щелочную сторону, что требует внесения в среды раз--
личных буферных систем (обычно применяют фосфат--
ный буфер). Сбалансированные среды отличают высо--
кая буферность и стабильный оптимум рН. Важно так-
же создание оптимальной концентрации О2 и СО2. ;

Классификации сред

Среды классифицируют по консистенции, составу, про-исхождению, назначению и загрязнённости материала.

По консистенции питательные среды разделяют на плотные (твёрдые), полужидкие и жидкие.

По составу выделяют белковые, безбелковые и ми-неральные среды.

По происхождению среды разделяют на искусствен-ные и естественные (природные).

Искусственные среды разделяют на животные [например, мясопептонный агар (МПА) или мясопептонный бульон (МПБ)] и растительные (например, настои сена и соломы, отвары злаков, дрожжей или фруктов, пивное сусло и др.).

Естественные среды могут содержать компоненты животного (например, кровь, сыворот-ка, жёлчь) или растительного (например, кусочки овощей и фруктов) происхождения.

По назначению выделяют консервирующие среды (для первичного посева и транспортиров-ки), среды обогащения (для накопления определённой группы бактерий), среды для культиви-рования (универсальные простые, сложные специальные и для токсинообразования), среды для выделения и накопления (консервирующие, обогащения и элективные) и среды для идентифи-кации (дифференциальные и элективно-дифференциальные).

По загрязнённости материала. Если материал слабо загрязнён посторонней микрофлорой, то для выделения чистых культур применяют простые (по составу) среды. При обильной контами-нации сапрофитами используют специальные или элективные (для отдельных видов), селек-тивные (только для отдельных бактерий), дифференциально-диагностические (для облегчения идентификации) среды.

Характеристики сред

Консервирующие среды предупреждают отмирание патогенов и подавляют рост сапрофитов. Наибольшее применение нашли глицериновая смесь (среда Тига), гипертонический ра-створ, глицериновый консервант с LiCl2, раствор цитрата натрия и дезоксихолата натрия (среда Бенгсанга-Эллиота).

Среды обогащения (например, среда Китта-Тароцци, селенитовый бульон, тиогликолятная среда) применяют для накопления определённой группы бактерий за счёт создания усло-вий, оптимальных для одних видов и неблагоприятных для других. Наиболее часто в качестве подобных агентов используют различные красители и химические вещества -- соли жёлчных кислот, тетратионат Na+, теллурит К+, антибиотики, фуксин, генциановый фиолетовый, брилли-антовый зелёный и др.

Элективные и селективные среды (например, среды Уйлсона-Блэра, Эндо, Плбскирева, Мак-Конки) предназначены для первичного посева материала или для пересева с консервирующих сред или сред обогащения с целью получения чистой культуры. Среды готовят с учётом биохимических и энергетических потребностей микроорганизмов. Соответственно, выделяют кровяные и сывороточные среды (например, Лёффлера, Бордё-Жангу), яичные среды (например, Лёвенштайна-Йенсена) и др Дифференциально-диагностические среды (например, среды Хисса, Кларка) применяют для изучения и идентификации отдельных типов, видов и групп бактерий. В качестве основы применяют различные органические и неорганические соединения, гидролизаты казеина, пептонную воду, бульон Хоттингера-Мартена, дополненные углеводами, спиртами, мочевиной и другими веществами; при их расщеплении происходит сдвиг рН в кислую (углеводы, спирты, липилы) или щелочную (белки) сторону. Соответственно, выделяют среды с углеводами и спир-тами, среды с мочевиной, среды для определения индолообразования, среды для определения протеолитической активности и комбинированные (политропные) среды. В такие среды так-же часто вносят различные индикаторы (например, бромтимоловый синий, индикатор Андраде, бромкрезоловый пурпурный и крезоловый красный), помогающие визуально определить изме-нение рН, характерное для различных микроорганизмов. В частности, сдвиг в кислую сторону вызывает покраснение среды с реактивом Андраде или пожелтение при использовании среды с бромтимоловым синим, тогда как при защелачивании реактив Андраде и индикатор бром-тимоловый синий не меняют цвет среды. Все дифференциально-диагностические среды разде-ляют на четыре основные группы.

Среды, содержащие белки, дающие характерные изменения под действием бактериальных ферментов (кровь, желатина, молоко и др.), применяют для определения гемолитических или протеолитических свойств. Наиболее распространены мясопептонная желатина (МПЖ), свер-нувшаяся лошадиная сыворотка, молоко и кровяной агар (КА).

Среды, содержащие углеводы или многоатомные спирты. Ферментативное расщепле-ние субстратов приводит к сдвигу рН и изменению окраски среды, а иногда и образованию газа. Наиболее распространены цветные среды с различными углеводами (например, с бром-тимоловым синим, индикатором ВР), лакмусовое молоко (среда Минкевича) и среды Хисса. Из углеводов наиболее часто используют моносахариды (ксилозу, арабинозу, глюкозу, фруктозу, маннозу, галактозу), дисахариды (лактозу, мальтозу, сахарозу), полисахари-ды (крахмал, гликоген, инулин, декстрин), спирты (дульцит, маннит, сорбит, глицерин) и гликозиды (адонит, инозит, салицин, амигдалин).

Среды для определения редуцирующей способности. В эту группу входят среды с крас-ками, обесцвечивающимися при восстановлении (например, метиленовый голубой, нейтраль-ный красный, индигокармин), а также среды с нитратами для определения денитрифицирую-щей активности бактерий (при положительном результате среды окрашиваются в синий цвет).

Среды, включающие вещества, ассимилируемые только определённой группой бактерий. Наиболее известны цитратный агар Симмонса и цитратная среда Козера.

Посев и культивирование

При достаточном содержании патогенных бактерий в образце проводят посев на плотные пита-тельные среды (для получения изолированных колоний). Если в исследуемом материале бактерий мало, то посев проводят на жидкие среды обогащения. На практике выделение относительно неприхотливых бактерий обычно проводят на простых средах (например, на КА, агаре Плоскирева, тиогликолевом бульоне, агаре Сабуро и т.д.). Для выделения прихотливых видов в среды вносят питательные вещества (кровь, сыворотку, дрожжевой экстракт и др.), а также погло-тители токсических метаболитов, образующихся при росте бактерий (например, дре-весный уголь). Для посевов применяют микробиологические петли, реже иглы и шпатели.

Получение изолированных колоний

Для получения изолированных колоний на практике наиболее часто используют модифика-цию рассева по Дригальски. Для этого материал наносят на поверхность плотной питательной среды ближе к краю и делают «бляшку». Затем из неё материал распределяют по четырём квадратам, проводя петлёй штрихи, как показано на рис. 1-12, обжигая петлю после засева каждого квадрата. Подобный метод позволяет получить изолированные колонии и изучать их. Исключение составляет техника посева при бактериологическом исследовании мочи (техника штрихового засева показана на рис. 1-13). Указанные методы пригодны для посева аэробных и факультативно анаэробных бактерий, а также нестрогих анаэробов.

Температура культивирования

Патогенные бактерии вариабельны в отношении температур, оптимальных для их роста, но большинство из них неплохо развивается при 35-37 °С. Исключение составляют некоторые атипичные микобактерии, возбудитель чумы, листерии и лептоспиры (температурный оптимум 20-30 °С), а также Campylobacter jejuni (температурный оптимум 42 °С).

.

Состав газовой среды

Бактерии чётко разделяют по отношению к содержанию кислорода в атмосфере культиви-рования.

Аэробы. Посевы аэробных бактерий культивируют в простых термостатах. Некоторые факуль-тативно анаэробные виды также можно культивировать при атмосферном воздухе, но более оптимально помещение посевов в термостаты с дозированной подачей кислорода. На практи-ке их чаще помещают в эксикаторы, куда вносят горящую свечу; после её выгорания в атмо-сфере снижается содержание кислорода и повышается содержание СО2.

Анаэробы. Посевы анаэробных бактерий в жидких средах заливают вазелиновым или другим маслом. При использовании плотных сред посевы культивируют в специальных устройствах -- анаэростатах (откуда откачивают воздух) либо заливают посевы тонким слоем агара. Анаэ-робные условия можно создать химическим путём, поместив посевы в эксикаторы, на дно которых заливают щелочной раствор пирогаллола, поглощающего кислород. Также можно использовать методы Фортнера, Цейсслера и Вейнберга.

Метод Фортнера. Посевы проводят на чашку Петри с толстым слоем среды, разделённым пополам узкой канавкой, вырезанной в агаре. На одну половину засевают культуру аэроб-ных бактерий, на другую -- анаэробных. Края чашки заливают парафином и инкубируют в термостате. Первоначально наблюдают рост аэробов, а затем (после поглощения кислоро-да) -- рост анаэробов.

Метод Цейсслера используют для выделения чистых культур спорообразующих анаэробов. Для этого проводят посев на среду Китта-Тароцци, прогревают 15 мин при 80 °С (для унич-тожения вегетативных форм), заливают вазелиновым маслом и инкубируют 24 ч. Затем про-водят посев на сахарно-кровяной агар для получения чистых культур. После 24-часового культивирования подозрительные колонии изучают и отсевают на среду Китта-Тароцци (с последующим контролем чистоты выделенной культуры).

Метод Вейнберга используют для получения чистых культур строгих анаэробов. Культуры, выращенные на среде Китта-Тароцци, вносят в сахарный бульон. Затем пастеровской пи-петкой с запаянным концом материал переносят в узкие пробирки (трубки Виньяля) с сахарным МПА, погружая пастерку до дна пробирки. Засеянные пробирки быстро охлаждают холодной водой, что позволяет зафиксировать отдельные бактериальные клетки в толще затвердевшего агара. Пробирки инкубируют, и изучают выросшие колонии. При обнаружении подозрительной колонии на её месте делают распил, колонию быстро отбирают и засеивают на среду Китта-Тароцци (с последующим контролем чистоты выделенной культуры).

1

Методы культивирования

При выращивании бактерий применяют стационарный способ, способ глубинного культивирования с аэрацией и метод проточных питательных сред. В соответствии со способами выращивания бактериальные культуры разделяют на периодические (при стационарном и глубинном культивировании) и непрерывные (при проточном культивировании).

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать