Методы микробиологической диагностики
p align="left">Стационарный способ -- наиболее часто используемый на практике. Состав сред остаётся постоянным, с ними не проводят никаких дополнительных манипуляций.

Способ глубинного культивирования применяют при промышленном выращивании бактериальной биомассы, для чего используют специальные котлы-реакторы. Они снабжены систе-мами поддержания температуры, подачи в бульон различных питательных веществ, переме-шивания биомассы и постоянной подачи кислорода. Создание аэробных условий по всей толще среды способствует протеканию энергетических процессов по аэробному пути, что способствует максимальной утилизации энергетического потенциала глюкозы и, следователь-но, максимальному выходу биомассы.

Метод проточных сред (промышленный способ культивирования) позволяет постоянно под-держивать бактериальную культуру в экспоненциальной фазе роста, что достигают постоянным внесением питательных веществ и удалением определённого числа бактериальных клеток. Пре-бывание бактерий в экспоненциальной стадии роста обеспечивает максимальный выход различ-ных БАВ (витамины, антибиотики и др.).

Первичная идентификация бактерий

В большинстве случаев изучение особенностей роста для первичной идентификации возбу-дителей проводят на колониях, выросших в течение 18-24 ч. Характер роста бактерий на раз-личных средах может дать много полезной информации. На практике используют сравнительно небольшой набор критериев. В жидких средах обычно учитывают характер поверхностного (образование плёнки) или придонного роста (вид осадка) и общее помутнение среды. На твёр-дых средах бактерии формируют колонии -- изолированные структуры, образующиеся в результате роста и накопления бактерий. Колонии возникают как следствие роста и размноже-ния одной или нескольких клеток. Таким образом, пересев из колонии в дальнейшем даёт возможность оперировать с чистой культурой возбудителя. Рост бактерий на плотных сре-дах имеет больше характерных особенностей.

Гемолиз

Некоторые бактерии выделяют гемолизины -- вещества, разрушающие эритроциты. На КА их колонии окружают зоны просветления. Образование гемолизинов (и соответственно -- раз-меры зон гемолиза) может быть вариабельным, и для адекватного определения гемолитической активности следует просматривать чашки с посевами против источника света (рис. 1-14). Активность гемолизинов может проявляться в полном или неполном разрушении эритроцитов.

б-Гемолиз. Разрушение эритроцитов может быть неполным, с сохранением клеточной стромы. Подобный феномен называют б-гемолиз. Просветление среды вокруг колоний обычно незначительно, позднее среда вокруг колоний может приобретать зеленоватую окраску. Подобный рост характерен для пневмококка, а также для группы так называемых зеленя-щих стрептококков.

в-Гемолиз. Гораздо большая группа бактерий вызывает полное разрушение эритроцитов, или в-гемолиз. Их колонии окружены прозрачными зонами различного размера. Например, Streptococcus pyogenes и Staphylococcus aureus образуют большие зоны гемолиза, a Listeria monocytogenes или Streptococcus agalactiae -- небольшие, диффузные зоны. Для определения гемолитической активности не следует применять шоколадный агар (ША), так как образующи-еся зоны б- или в-гемолиза не имеют характерных особенностей и вызывают одинаковое позеленение среды.

Размеры и форма колоний

Важные признаки колоний -- их размеры и форма. Колонии могут быть большими или мелкими. Величина колоний -- признак, позволяющий различать различные виды, роды и даже типы бактерий.

В большинстве случаев ко-лонии грамположительных бактерий мель-че колоний грамотрицательных бактерий. Колонии бактерий могут быть плоскими, приподнятыми, выпуклыми, иметь вдавлен-ный или приподнятый центр. Другой важный признак -- форма краёв колоний. При изучении фор-мы колоний учитывают характер её поверх-ности: матовый, блестящий, гладкий или ше-роховатый. Края колоний могут быть ров-ными, волнистыми, дольчатыми (глубоко изрезанными), зубчатыми, эрозированными, бахромчатыми и т.д. Размеры и формы ко-лоний часто могут изменяться. Подобные изменения известны как диссоциации. Наиболее часто обнаруживают S- и R-ducсоциации. S-колонии круглые, гладкие и выпуклые, с ровными краями и блестящей поверхностью. R-колонии -- неправильной формы, шероховатые, с зубчатыми краями.

Цвет колоний

При просмотре посевов также обращают внимание на цвет колоний. Чаще они бесцветные, белые, голубоватые, жёлтые или бежевые; реже -- красные, фиолетовые, зелёные или чёрные. Иногда колонии ирризируют, то есть переливаются всеми цветами радуги [от греч. iris, радуга]. Окрашивание возникает в результате способности бактерий к пигментообразованию. На специ-альных дифференцирующих средах, включающих специальные ингредиенты или красители, ко-лонии могут приобретать разнообразную окраску (чёрную, синюю и др.) за счёт включения красителей либо их восстановления из бесцветной формы. В данном случае их окраска не связана с образованием каких-либо пигментов.

Консистенция колоний и особенности роста на среде

Полезную информацию могут дать консистенция колоний и особенности роста на среде. Обычно эту информацию можно получить при прикосновении к колониям петлёй. Колонии могут легко сниматься со среды, врастать в неё или вызывать её коррозию (образуя трещины и неровности). Консистенция колоний может быть твёрдой или мягкой. Мягкие колонии -- маслянистые или сливкообразные; могут быть слизистыми (прилипают к петле) или низкими (тянущимися за петлёй).

Твёрдые колонии -- сухие, восковидные, волокнистые или крошковатые; могут быть хрупкими и ломаться при прикосновении петлёй.

Запах

Запах -- менее важный признак колоний, поскольку вызываемые им ассоциации носят субъективный характер. В частности, культуры синегнойной палочки имеют запах карамели, культуры листерий -- молочной сыворотки, протеев -- гнилостный запах, нокардий -- свежевскопанной земли.

Биохимические методы идентификации бактерий

Методов, используемых для идентификации особенностей метаболизма бактерий, очень много, но на практике применяют небольшое их количество. Большинство способов основано на использовании дифференциально-диагностических сред, включающих различные индикаторы.

Способность к ферментации углеводов

Способность к ферментации углеводов оценивают по изменению окраски среды вследствие образования органических кислот (соответственно, происходит уменьшение рН), вызывающих изменение окраски индикатора.

«Пёстрый» ряд. Для определения сахаролитической активности применяют среды Хисса; в их состав входят 1% пептонная вода (или МПБ), индикатор Андраде и один из углеводов. При расщеплении углевода происходит изменение цвета среды с жёлтого на красный. Поскольку бактерии различают по способности ферментировать те или иные углеводы, то ряды пробирок приобретают пёстрый вид. Поэтому этот набор сред и называют «пёстрый» (или цветной) ряд.

Стеклянные поплавки. Для определения способности микроорганизмов ферментировать уг-леводы с образованием кислоты и газа в сосуды со средами вносят стеклянные поплавки (запаянные с одного конца короткие трубочки), всплывающие после наполнения их газом.

Расщепление белков

Некоторые бактерии проявляют протеолитическую активность, выделяя протеазы, катализи-рующие расщепление белков. Наличие протеолитических ферментов из группы коллагеназ оп-ределяют при посеве уколом в МПЖ. При положительном результате наблюдают его разжиже-ние в виде воронки либо послойно сверху вниз. Способность к расщеплению белков и амино-кислот также можно оценивать по изменению окраски среды, так как образующиеся продукты -- аммиак, индол и сероводород -- сдвигают рН в щелочную сторону, вызывая изменение окраски индикатора.

Образование аммиака. Для определения способности к образованию NH3 проводят посев в МПБ, и между его поверхностью и пробкой закрепляют полоску лакмусовой бумаги. При положительном результате бумажка синеет.

Образование индола и H2S. Обычно для определения способности к образованию индола и сероводорода также проводят посев в МПБ, между его поверхностью и пробкой закрепляют бумажки: в первом случае пропитанные раствором щавелевой кислоты {при образовании индола бумажка краснеет), во втором -- раствором ацетата свинца (при образовании H2S бумажка чернеет). Также используют специальные среды, содержащие индикаторы (напри-мер, среда Клиглера), либо их вносят непосредственно в среду после регистрации видимого роста бактерий.

Тест на нитратредуктазную активность

Этот тест используют для идентификации отдельных видов бактерий. Он позволяет опреде-лить способность восстанавливать нитраты в нитриты. Способность к восстановлению NO3 в N02, определяют культивированием в МПБ, содержащем 1% раствор KNO3. Для определения нитритов в среду добавляют несколько капель реактива Грисса. При положительном резуль-тате наблюдают появление красного кольца.

Хроматография

Хроматографические методы используют для идентификации бактерий и установления их систематического положения. Объекты для исследования -- жирные кислоты клеточной стенки, уникальные интермедиаты и конечные метаболиты жизнедеятельности бактерий. Хроматографические системы обычно сопрягают с компьютерами, что значительно упрощает учёт результатов. Наиболее распространена идентификация жирных короткоцепочечных и тейхоевых кислот методом газожидкостной хроматографии. Жидкостной хроматографией под высоким давлением идентифицируют миколевую кислоту в клеточных стенках микобактерий. Тонкослойную хроматографию используют для идентификации изопреноидных хинонов клеточной стенки бактерий. У различных родов их содержание и набор различны, но постоянны, что позволяет установить систематическое положение каждого конкретного вида.

Индикаторные бумажки

Для изучения биохимической активности бактерий широко применяют системы индикаторных бумажек или наборы мультимикротестов.

Система индикаторных бумажек (СИБ) -- набор дисков, пропитанных различными субстратами. Их можно непосредственно вносить в пробирки со взвесью бактерий либо предварительно поместить в лунки пластиковых планшетов, куда будут внесены исследуемые бактерии. Так, на практике применяют наборы Minitek Enterobacteriaceaelll и Minitek Neisseria для дифференциальной диагностики энтеробактерий (четырнадцать субстратов) и нейссерий (четыре субстрата), позволяющие получить результаты через 4 ч инкубации при 37 0С.

Наборы мультимикротестов -- пластиковые планшеты, в лунки которых помещены различные субстраты и индикаторы. В лунки вносят различные разведения бактерий и инкубируют при 37 °С. На практике используют тесты RapID NH для идентификации нейссерий и гемофилов, RapID Е для энтеробактерий и др., позволяющие получить результаты не позднее 4-8 ч.

Автоматические системы идентификации бактерий

Автоматические системы идентификации бактерий позволяют быстро (на 24-48 ч быстрее обычных методов) получить информацию о виде возбудителя заболевания и его чувствительности к антимикробным препаратам. В настоящее время наибольшее распространение получили системы типа Microscan и Vitek.

Системы Microscan. Используют турбидиметрические, колориметрические и флюоресцентные методы идентификации бактерий. Системы состоят из комплектов пластиковых планшетов, содержащих различные субстраты. Грамположительные и грамотрицательные бактерии дифференцируют с помощью флюоресцирующих субстратов (время анализа -- 2 ч). Для идентификации гемофилов, анаэробов и дрожжей используют хромогенные субстраты, изменяющие свою окраску (время анализа -- 4-6 ч). Минимальные ингибирующие концентрации различных антибиотиков определяют по изменению оптической плотности. Система компьютеризирована и автоматически проводит все необходимые расчёты.
Системы Vitek. В этой системе применяют один тип планшетов с тридцатью лунками.В каждую лунку автоматически вносится суспензия бактерий с известной концентрацией микробных тел. Идентификация микроорганизмов (гемофилы, нейссерии, дрожжи и анаэробы) основана на турбидометрии реакционной среды в лунке. В зависимости от свойств микроорганизма время, необходимое для его идентификации, варьирует от 4-8 до 18 ч. Система полностью компьютеризирована и работает автоматически.

Методы идентификации нуклеиновых кислот

Методы выявления РНК и ДНК возбудителей нашли применение в основном при диагностике вирусных инфекций. Тем не менее разработаны тест-системы для идентификации некоторых прихотливых бактерий (например, легионелл, хламидий), а также для идентификации колоний Neisseha gonorrhoeae, Haemophilus influenzae типа b, стрептококков группы В, энтерококков и микобактерий.

Гибридизация нуклеиновых кислот

Наиболее распространены методы гибридизации нуклеиновых кислот (рис. 1-17). Принцип методов обусловлен способностью ДНК (и РНК) специфически соединяться (гибридизироваться) с комплементарными фрагментами искусственно созданных нитей ДНК (и РНК), меченных изотопами или ферментами (пероксидазой или щелочной фосфатазой). В дальнейшем образцы исследуют различными методами (например, ИФА).

Метод гибридизации в растворах даёт наиболее быстрые результаты (рис. 1-18, А). Ши-рокому внедрению метода препятствует проблема удаления не связавшихся нитей нуклеино-вых кислот.

Метод гибридизации на твёрдой основе (рис. 1-18, Б) и его сэндвич- модификация (рис. 1-18, В) распространён больше. В качестве твёрдой основы служат мембраны из нитроцеллюлозы или нейлона. Не связавшиеся реагенты удаляют многократным отмыванием.

ПОЛИМЕРАЗНАЯ ЦЕПНАЯ РЕАКЦИЯ (ПЦР)

Основу метода ПЦР составляет катализируемое ДНК-полимеразой многократное образование копий определённого участка ДНК. Первоначально проводят отжиг -- термическое разделение двухнитевой молекулы ДНК на отдельные цепочки. Затем среду охлаждают и вносят праймеры (затравки), комплементарные нуклеотидным последовательностям обеих цепочек. Для запуска реакции применяют синтетические праймеры -- олигонуклеотиды, состоящие из 10-20 нуклеоти-дов (например, дезоксинуклеотидтрифосфат), взаимодействующие с окончаниями последо-вательностей и образующие последовательности в 50-1000 оснований. Затем в среду вносят тер-мостабильную taq-полимеразу (по названию бактерии Thermus aquaticus), что запускает образова-ние вторичных копий цепей ДНК, после чего образующиеся двухнитевые молекулы ДНК снова подогревают. Образующиеся отдельные цепочки остужают, вносят праймеры и снова повторяют процедуру подогрева и охлаждения; поскольку tag-полимераза термостабильна, то необходимость в её повторном внесении отсутствует (рис. 1-19). ПЦР позволяет получить большие количества изучаемого фрагмента ДНК даже в том случае, если в распоряжении исследователя имеется всего лишь одна исходная молекула геномной ДНК. Идентификацию копий ДНК проводят методом электрофореза. Метод ПЦР лежит также в основе ДНК-идентификации личности, установления родства людей, выявления генов наследственных болезней и пр.

Серологические методы

Классические серологические реакции применяют для выявления бактериаль-ных AT, а также для выявления Аг, особенно для идентификации бактериальных Аг. Среди современных методов наибольшее распространение нашли методы твердофазного ИФА и ла-текс-агглютинации.

Аллергологические методы

Сенсибилизирующей активностью обладает ограниченное количество бактериальных Аг. Поэтому метод кожных проб применяют лишь при диагностике туберкулёза, сапа, мелиоидоза, бруцеллёза и туляремии.

Биологические методы

Выделение патогенных бактерий от заражённых животных имеет большую диагностическую ценность, особенно при контрольном применении иммунных сывороток. Цель подобных мани-пуляций -- уменьшение времени проведения бактериологических исследований.

При диагностике инфекций, вызванных эффектами токсина (например, ботулизма или сибирской язвы), материал, предположительно содержащий возбудитель и токсин, помещают в физиологический раствор, а затем фильтруют через бумажные фильтры, натёртые тальком (последний хорошо адсорбирует токсин). Смывами с фильтров заражают чувствительных животных.

При диагностике инфекций, обусловленных различными патогенными свойствами самого возбудителя, лабораторных животных заражают микробной взвесью.

Для диагностики бактериальных инфекций используют различных животных, так как проявляют видовую восприимчивость к различным этиологическим агентам.

Мыши чувствительны к пневмококкам, нейссериям, пастереллам, клостридиям, листериям, возудителям сибирской язвы, туляремии, чумы, ботулизма, столбняка, коклюша и мелиоидоза

Крысы чувствительны к возбудителям туберкулёза (бычьего типа), мелиоидоза и др.

Морские свинки чувствительны к возбудителям туберкулёза (человеческого типа), дифтерии, сапа, чумы, бруцеллёза, туляремии, холеры, газовой гангрены, ботулизма, псевдотуберкулёза и др.

Кролики чувствительны к стафилококкам, стрептококкам, нейссериям, Mycobacterium bovis, возбудителям газовой гангрены, сибирской язвы, ботулизма, столбняка и др.

Кошки. Животных заражают стафилококками, возбудителями сапа, коклюша и др.

Обезьяны. Их заражают шигеллами, листериями, сальмонеллами, возбудителями мелиоидоза, коклюша и др.

Птицы. Кур и голубей используют для диагностики туберкулёза (птичьего типа), пастереллёза, риносклеромы и др.

МЕТОДЫ ОБНАРУЖЕНИЯ ВИРУСОВ

Лабораторные методы при диагностике вирусных инфекций включают:

выделение и идентификацию возбудителя;

обнаружение и определение титров противовирусных AT;

обнаружение Аг вирусов в образцах исследуемого материала;

микроскопическое исследование препаратов исследуемого материала.

Забор материала. При заборе материала для исследований необходимо выполнять следую-щие условия:

образцы следует отбирать как можно раньше либо с учётом ритма циркуляции возбудителя;

материал следует отбирать в объёме, достаточном для всего комплекса исследований;

образцы следует доставлять в лабораторию незамедлительно (!), при относительно кратковре-менной транспортировке (не более 5 сут) образцы сохраняют на льду, при более длитель-ной -- при температуре -50 °С.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать