Получение ферментных препаратов выращенных глубинным способом
ормальные условия для работающих на предприятиях ферментной промышленности поддерживаются с помощью приточно-вытяжной вентиляции, обеспечивающей 4 - 8-кратный воздухообмен в вентилируемом помещении. Воздух, подаваемый в рабочие помещения, за исключением специальных помещений (с растительными камерами для поверхностного культивирования), должен иметь относительную влажность около 60 - 65 % и температуру 18 - 20 °С. Он должен быть полностью очищен от пыли, а для некоторых цехов - и от микроорганизмов. При использовании мокрой уборки полов рекомендуется для обеспечения нормальных условий делать полы с небольшим уклоном и снабжать их трапами, позволяющими быстро удалять воду с поверхности пола. Стены и полы предприятий ферментной промышленности выполняются из керамической облицовочной плитки для улучшения санитарных условий. При размещении оборудования и коммуникаций учитывается необходимость удаления пыли с выступающих частей оборудования и особенно с вентиляционных коробов. Потолок, верхнюю часть стен и оборудование следует чаще красить для поддержания соответствующих гигиенических условий.

В случае работы с микроскопическими грибами и при повышенной влажности воздуха наблюдается рост микроорганизмов на стенах и в малодоступных запыленных местах, что создает антисанитарные условия труда. В таких случаях рекомендуется их красить фунгицидными красками. Фунгицидные краски могут быть пяти типов: 1) на основе хлорированного каучука. Они устойчивы к высокой относительной влажности воздуха, но очень трудно наносятся на поверхность; 2) с высоким содержанием галондозамещенного фенола (например, пентахлорфенола); 3) содержащие органические соединения меди (например, медь-8-хннолат или нафтенат меди); 4) содержащие ртуть или оловоорганические соединения (например, фенилмеркуриолеат, дифенилртуть и др.); 5) с высоким содержанием цинка.

На предприятии должен осуществляться строгий и постоянный контроль за наличием в воздухе токсических газов и паров. Некоторые вещества легко обнаруживаются по запаху даже в концентрациях, меньших установленных нормами (хлороформ, этиловый эфир, ацетальдегид, аммиак, бром, метанол) - от 0,3 до 600 мг в 1 м3 воздуха в зависимости от соединения. Другие вещества могут содержаться в воздухе в значительно больших количествах, чем допускается по нормам, но не будут замечены работающими. Это более опасно, так как может привести к отравлению.

Существуют специальные нормы предельно допустимых концентраций (ПДК) в воздухе помещений ряда химических веществ.

В ряде помещений предприятий ферментной промышленности могут создаваться неблагоприятные климатические условия в результате несоблюдения оптимальной температуры, влажности, скорости движения воздуха, повышенного излучения тепла оборудованием. Эти факторы ухудшают самочувствие и работоспособность персонала, повышаются утомляемость и потоотделение, которое может увеличиться по сравнению с нормой в 8 - 10 раз и достичь 350 - 400 г/ч теряется тканевая жидкость, и наступает состояние чрезмерной усталости и слабости. Нормальные климатические условия в помещениях должны устанавливаться с помощью приточно-вытяжной вентиляции, а также путем максимальной автоматизации и механизации процессов и управления ими из специальных помещений с кондиционированным режимом. Все аппараты, излучающие тепло или холод, должны покрываться надежным изоляционным покрытием. Если избежать неблагоприятных климатических условий невозможно, то для поддержания нормального водно-солевого баланса организма необходимо обеспечить работающих подсоленной газированной водой (3 - 5 г соли на 1 л).

Цехи, связанные с использованием растворителей и других химических веществ, должны тщательно вентилироваться, а воздух этих помещений - контролироваться на присутствие токсических газов и паров. Повышенное содержание химических веществ в воздухе производственных помещений часто связано с неисправностью трубопроводов, с неправильной установкой и эксплуатацией кранов и вентилей, а также с нарушениями герметизации фланцевых соединений разъемных аппаратов, например в результате разбухания и износа прокладочных материалов. Такие явления крайне опасны, так как они могут привести не только к ухудшению условий работы, но и к аварии, поэтому необходимо регулярно и тщательно проверять аппараты, вентили и соединения на герметичность.

Промышленное производство любых продуктов, в том числе ферментных препаратов, организуется на основании технологического регламента, где обязательной частью является раздел «Основные правила безопасности ведения процесса». На заводе для каждого аппарата узла технологической схемы разрабатываются инструкции по технике безопасности, которые вывешиваются на видном месте.

Безопасность условий труда во многом зависит от своевременного проведения планово-предупредительного ремонта (ППР), внутреннего наружного осмотра оборудования по определенному графику в период работы завода между капитальными ремонтами. Перенесение сроков текущего ремонта, установленных месячным графиком ППР, запрещено, изменение сроков более 2 дней допускается только с разрешения главного инженера и оформляется актом.

Взрыво- и пожаробезопасность. Производство ферментных препаратов часто связано с использованием легковоспламеняющихся веществ поэтому относится к категории взрыво- и пожароопасных производств. Источниками взрыва пожара на предприятиях ферментной промышленности могут быть различные органические растворители в цехах выделения ферментных препаратов на участке регенерации растворителей. Взрывоопасны также цехи с высокой запыленностью, особенно, где есть места скопления мельчайшей пыли ферментных препаратов, где используется пневмотранспорт, установлены распылительные сушилки, складские помещения и т. д. Степень пожарной опасности определяется свойствами жидкостей: пределом взрываемости (воспламенения) паров в воздухе; температурой самовоспламенения паров жидкости в воздухе; склонностью данной жидкости к самовозгоранию в определенных условиях и к электролизации. Категории пожароопасности помещений определяются в соответствии со строительными нормами правилами (СНиП).

Особую пожарную опасность представляют цех получения очищенных ферментных препаратов с помощью органических растворителей и цех по регенерации органических растворителей. Эти цехи должны быть изолированы от смежных невзрывоопасных помещений глухими (брандмауерными) стенами, сообщение между ними допускается только по специальным переходам. Они должны иметь специальный пожарный выход, а при высоте помещения больше 10 м - наружную металлическую пожарную лестницу с уклоном не более 45° и шириной не менее 0,7 м. Взрывоопасные помещения должны покрываться только легко сбрасываемыми при взрывной волне кровельными перекрытиями.

Все электродвигатели, пусковые устройства которых могут искрить, должны быть герметизированы и изготовлены во взрывобезопасном исполнении. Электрооборудование должно удовлетворять требованиям, изложенным в Правилах устройства электроустановок (ПУЭ).

Емкости для хранения растворителей устанавливают на значительном расстоянии от производственного здания по основному направлению ветра для данной местности. Безопасность хранения легковоспламеняющихся и горючих жидкостей обеспечивается путем установления в резервуарах и цистернах выхлопного клапана и огнепреградителя.

Трубопроводные линии для легколетучих и взрывоопасных жидкостей окрашивают в коричневый цвет и удаляют от других коммуникаций.

От прямых ударов молний предусматривается оборудование громозащиты. Для защиты от проявления статического электричества всю аппаратуру, металлоконструкции, трубопроводы и емкости с органическими растворителями, воздуховоды и резервуары заземляют.

Все оборудование, имеющее открытые вращающиеся или движущиеся элементы, закрывают защитными коробами или сетками.

Оборудование и установки, издающие шумы, должны по возможности герметизироваться и устанавливаться на амортизационных подушках или в специальных помещениях.

Оборудование и устройство бытовых помещений (кроме туалетных, курительных комнат и помещений для кормления грудных детей) осуществляются в зависимости от санитарной характеристики производственных процессов.

Повышенная взрыво- и пожароопасность ферментных предприятий, разнообразие используемых аппаратов и устройств, опасность, которую представляют продуценты ферментов, вызывают необходимость тщательного изучения и освоения правил техники безопасности и промышленной санитарии. Занятия, инструктаж и проверку полученных знаний и навыков следует проводить не реже 1 раза в квартал. Каждый вновь поступающий на работу проходит обязательный инструктаж. Изучение правил техники безопасности и правил промышленной санитарии обязательно для каждого студента.

Инструкции по технике безопасности и правила санитарии разрабатываются для каждого рабочего места, выдаются на руки исполнителям и вывешиваются на видных местах. Инженерный персонал завода должен внимательнейшим образом следить и неукоснительно исполнять сам все правила техники безопасности и промышленной санитарии. Ответственность за соблюдение правил охраны труда несут руководители подразделений, а в целом по предприятию - директор и главный инженер.

2. Производство протеолитических ферментных препаратов

Ферменты, обладающие способностью гидролизовать белки, широко используются в самых различных отраслях промышленности, сельском хозяйстве и медицине. Протеолитические ферменты выпускаются промышленностью в большом количестве, это крупнотоннажное производство. Протеиназы применяются в пищевой технологии, где идет процесс с использованием микроорганизмов (дрожжи, молочнокислые бактерии и др.). Введение в процесс протеиназ позволяет в результате гидролиза белков обрабатываемого сырья обеспечить дрожжам нормальные условия жизнедеятельности, что улучшает весь технологический процесс, особенно в пивоварении, спиртовой промышленности, виноделии. В ряде исследований показано, что протеолитические ферменты могут использоваться в хлебопечении для уменьшения длительности замесов при производстве заварных сортов хлеба и специальных изделий, изготавливаемых из муки с сильной клейковиной. Внесение в тесто небольших количеств амилаз и протеиназ увеличивает газообразование, улучшает аромат, цвет корочки и мякиша, позволяет сократить процесс тестоведения. Широко применяются протеиназы для снятия различного рода белковых помутнений в пивоварении и виноделии и для ускорения фильтрационных процессов. Протеолитические ферменты используются для мягчения (тендеризации) мяса, мясных изделий, рыбы, что облегчает и ускоряет обработку полупродуктов, повышает их качество. В мясной, рыбной промышленности и в кулинарии используются не только микробные протеиназы, но и протеиназы, получаемые из растительного и животного сырья. Высокоочищенные протеолитические ферменты могут с успехом использоваться в крахмало-паточной промышленности для выделения особенно чистого крахмала без сопутствующих белков.

Комплексные ферментные препараты, содержащие протеиназы, используются в пищеконцентратной и консервной промышленности при приготовлении концентратов из трудно развариваемых круп, гороха, фасоли и др.

Протеииазы могут использоваться в кожевенной промышленности для обработки кож в процессе их обезволашивания и мягчеиия с большим эффектом: улучшается качество шкуры, сохраняется толщина готовой кожи, отделенная щетина может использоваться как вторичное сырье, а главное - резко улучшаются условия труда работающих. Используются протеиназы при обработке натурального шелка для процесса снятия белка с поверхности шелковой нити.

Самая большая потребность в протеолитических ферментах связана с их использованием в составе синтетических моющих средств (CMC). Особенно эффективна обработка протеиназосодержащими CMC больничного белья, загрязненного кровью и другими выделениями белковой природы.

Протеолитические препараты, особенно животного происхождения, широко используются в медицинской промышленности и медицине. Они применяются для приготовления питательных и диагностических сред, для изготовления ряда лечебных сывороток и вакцин. Протеиназы различной степени очистки используются в качестве лекарственных препаратов для регулирования процессов свертывания крови, при лечении воспалительных процессов, для восполнения недостатка ферментов в организме и т. д.

2.1 Источники получения протеиназ

Протеолитические ферменты синтезируются практически всеми живыми существами. Эти ферменты очень широко распространены в природе. В промышленных целях как источник получения протеиназ используются животные ткани, растения и микроорганизмы. Животными тканями для получения протеиназ является собираемое на мясокомбинатах ферментное сырье, состоящее из поджелудочной железы и слизистой оболочки желудка. Из растений промышленный интерес представляют плоды дынного дерева, побеги и листья инжира и отходы переработки ананасов.

Наиболее широким и перспективным источником протеиназ являются микроорганизмы. Активными продуцентами протеиназ являются бактерии, микроскопические грибы и актиномицеты. Можно назвать сотни микроорганизмов, принадлежащих к различным таксономическим группам, которые используются при промышленном получении протеиназ. Они чаще всего относятся к родам Bacillus, Aspergillus, Penicillium, Streptomyces, Pseudomonas и некоторые другие. Более подробно о продуцентах будет сказано в разделе, посвященном рассмотрению особенностей производства протеолитических препаратов.

2.2 Механизм действия, свойства и классификация протеиназ

Субстрат. Субстратами для действия протеолитических ферментов являются пептиды и белки. К последним относятся простые белки, состоящие только из аминокислот, их называют протеинами, и сложные белки, в состав которых наряду с белковой частью молекулы входят соединения небелковой природы (углеводы, витамины, жиры и др.) - протеиды. Все эти соединения имеют большую молекулярную массу и сложны по строению.

Пептиды также могут быть субстратом для протеиназ. Они имеют более низкую молекулярную массу, чем белки, и по составу подобны простым белкам. Они могут быть либо продуктами неполного гидролиза белка, либо природными соединениями. Пептиды могут быть синтезированы в лаборатории и использоваться как специфические субстраты в аналитических работах для определения способности ферментов к разрыву вполне определенных пептидных связей.

До начала 50-х годов все протеолитические ферменты по механизму их действия на субстрат подразделялись на две группы: протеиназы и пептидазы. Считалось, что гидролиз белка протекает в две стадии: сначала под действием протеиназ белки гидролизуются до пептидов, а затем на пептиды действуют пептидазы и расщепляют их до аминокислот.

Позднее, в 60-х годах, протеолитические ферменты классифицировали на четыре подкласса. В настоящее время действует новая классификация, по которой протеиназы относятся к третьему классу четвертому подклассу. С тем чтобы исключить путаницу, все ранее существовавшие подклассы были отброшены и по новой классификации первому подклассу в разделе протеолитических ферментов присвоен номер 11 (КФ 3.4.11). Такие сложности в классификации связаны с тем, что катализируемая суммарная реакция одинакова для всех протеолитических ферментов. Причем ферменты не имеют строгой субстратной специфичности в обычном смысле этого слова - подавляющее большинство этих ферментов действует на все денатурированные и на многие нативные белки. По новой классификации протеолитические ферменты были разделены на две основные группы: пептидазы КФ 3.4.11 - 15 и протеиназы - КФ 3.4.21 - 24.

Пептидазы. В первой группе протеолитических ферментов - пептидазах - подразделение по подподклассам осуществляется на основе механизма расщепления пептидных связей в пептидах. К группе ферментов, входящих в 11-й подподкласс (КФ 3.4.11) - б-аминоацилпептидгидролазы - относятся те, которые гидролитически расщепляют первую с N-конца пептидную связь. Группа КФ 3.4.12 - гидролазы пептидиламинокислот или гидролазы ациламинокислот - объединяет ферменты, действующие на первую пептидную связь с С-конца. Ферменты группы КФ 3.4.13 - дипептидгидролазы - гидролизуют дипептиды; групп КФ 3.4.14 - дипептидилпептид гидролазы - и КФ 3.4.15 - пептидилдипептидгидролазы - гидролизуют дипептиды соответственно с N- и С-конца. С 16-го до 20-го подподкласса в номенклатуре сделан пропуск с учетом будущих открытий ферментов, гидролизующих дипептиды.

Протеиназы. Вторая группа протеолитических ферментов - протеиназы - имеет четыре подподкласса (21 - 24), в котором все ферменты подразделяются в зависимости от особенностей механизма катализа, установленного по функционированию активного центра фермента, а также влияния рН на его активность. Специфичность к субстрату рассматривается лишь с позиции идентификации индивидуальных ферментов в пределах каждой из групп.

Сериновые протеиназы. К подподклассу 3.4.21 относятся протеиназы, для которых характерно наличие в каталитическом центре триады аминокислот: аспарагиновая кислота, гистидин и серии. В этот подподкласс внесены многие хорошо изученные протеийазы животного происхождения (химотрипсин, трипсин, тромбин, плазмин, эластаза и др.) и некоторые микробные протеиназы.

Тиоловые протеиназы. К подподклассу 3.4.22 относятся протеиназы, имеющие в активном центре SH-группу цистеина.

В подподкласс 3.4.22 вошел ряд важных протеиназ растительного происхождения, такие как папаин, фицин, бромелаин, химопапаин, и некоторые микробные протеиназы.

Кислые протеиназы. Они входят в подподкласс (3.4.23) и имеют оптимальный рН ниже 5, в каталитическом акте у этих ферментов участвуют остатки дикарбоновых аминокислот. Наиболее широко известны из этого подподкласса пепсин, катепсин и ряд кислых протеиназ грибного происхождения. В последний под подкласс (3.4.24) входят протеиназы, содержащие ионы металлов. В основном это различные микробные нейтральные протеиназы и некоторые протеиназы животного происхождения.

В классификации и номенклатуре протеолитических ферментов выделена ещё одна, третья группа протеиназ, которые включены в подподкласс 3.4.99. Это протеиназы с неизвестным механизмом катализа. В этот подподкласс внесено 26 ферментов, среди них много микробных протеиназ, но есть протеиназы и животного происхождения. Создание подподкласса 3.4.99 вызвано тем, что многие протеиназы обладают близкой, но не полностью изученной и определенной специфичностью. Они действуют на один и тот же субстрат, однако продукты гидролиза отличаются не только количественно, но и качественно.

Отличительной особенностью многих протеолитических ферментов животного происхождения является то, что они в организме существуют в неактивном состоянии в виде зимогенов, которые только при определенных условиях могут превращаться в активные формы. Это трипсин, химотрипсин, карбоксипептидазы, А и В, пепсины, реннин, катепсины, аминопептидазы, дипептидазы, тромбин, плазмин и др. Многие из данных ферментов получены в кристаллическом виде. Они чаще используются в медицине. Механизм их действия, субстратная специфичность, механизм ингибирования и активации подробно изучены. Имеются данные о строении активного центра, а для некоторых протеиназ известна и структура самого фермента. Также глубоко и всесторонне изучены основные протеиназы растительного происхождения: папаин, фицин, бромелаин, химопапаин, которые за рубежом широко применяются в медицине и пищевой технологии.

2.3 Получение микробных протеиназ

В Номенклатуру и классификацию ферментов внесено большое количество протеолитических ферментов микробного происхождения, которые относятся к различным подподклассам: 3.4.11 (7 ферментов), 3.4.13(5), 3.4.15(1), 3.4.16(1), 3.4.17(5), 3.4.21(4), 3.4.22(3), 3.4.23(1), 3.4.24(4) и 3.4.99(4). Необходимо отметить, что часто под одним номером находится очень много ферментов, получаемых из различных источников, но имеющих сходные свойства. Так, в подподклассе 3.4.21.14 представлена целая серия микробных протеиназ, среди продуцентов которых отмечаются Bacillus subtilis, E. coli, щелочная протеиназа из культур рода Aspergillus, Tritirachium album, Arthrobacter, Pseudomonas aeruginosa, Malbranchea pulchella, Streptomycer rectus, Candida lipolytica и др. Под номером 3.4.23.6 также объединено много ферментов, источниками которых являются микроорганизмы, в основном относящиеся к грибам родов: A. oryzae, A. terricola, A. saitoi, A. niger, P. janthinellum, R. chinensis, M. pusillus, M. miehei, Endothia parasitica, Candida albicans, Saccharomyces carlsbergensis, Rhodotorula glutinis, Physarum polycephalum и др. Все микробные металлопротеиназы объединены под номером 3.4.24.4. Они выделены из культур родов: Streptomyces, Sarcina, Micrococcus, Staphylococcus, Bacillus, Aeromonas, Pseudomonas, Escherichia, Aspergillus, Myxobacter, Serratia.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать