Физиология животных
p align="left">2. Тиреотропный - контролирует ф-цию щитовидной железы: а) ускоряет поглощение йода из крови, б) ускоряет высвобождение тиреоидных гормонов и их секрецию, в) стимулирует рост и развитие эпителия фолликул щит железы, е) увеличивает поглощение О2 клетками щит железы и повышает их проницаемость для моносахаридов, аминок-т и др в-в. Гипофункция - ослабляется деят-сть щит железы, она v в размерах, а содержание в крови гормона сокращается.

3. Адренокортикотропный.

1. Ускоряет синтез и секрецию глюкокортикоидов.

2. Стимулирует рост коры надпочечников, повышая синтез белка.

3. Усиливает проникновение глюкозы в клетки.

4. Активирует липазу жировой ткани и ^ выход свободных жирных к-т из жирового депо в кровь.

5. С её деят-стью связана мобилизация защитных сил организма при стрессах, травмах, инфекциях. Гипо и гиперф-ции - наруш-ся р-ции обмена в-в.

4. Лактотропный

1. Стимулирует развитие молочных желёз, активизирует образование молока и лактации.

2. Усиливает ф-цию жёлтого тела.

3. Уч-ет в формировании материнского инстинкта.

4. Стимулирует рост внутренних органов.

5. Тормозит овуляцию. Гипоф-ция - отсутствие лактации. Гипер - прекращение менструаций, истечение молока, ^ грудных желёз, импотенция.

5. Фолликулостимулирующий гормон,.

1. Стимулирует рост и созревание фолликулов до момента созревания.

2. Стимулирует сперматогенез.

3. Повышает чувствительность половых желёз к лютеинизирующему гормону.

4. Стимулирует биосинтез эстрогенов.

6. Лютеинизирующий гормон.

1. Вызывает интенсивный рост фолликулов, стимулир овуляцию и образован жёлтого тела.

2. Стимулир образован тестостерона. При недостатке - непрерывная течка. Происходит пат ^ размеров фолликулов.

11. Надпочечники. Гормоны коры надпочечников: глюкокортикоиды, минералокортикоиды. Надпочечники - парные образования, расположенные над почками. Сост из 2 слоев: коркового и мозгового. Гормоны коры надпочечников по относят к стероидным. Гормоны дел на 2 группы: глюкокортикоиды - влияют на обмен углеводов; минералокортикоиды - на минер и водный обмен. Минералокортикоиды. Регулируют минеральный и водный обмен. Гормон - альдостерон, образуется в клубочковой зоне. Усиливает активную реабсорбцию Nа из первичной мочи, способствует выделению К в мочу, уч-ет в поддержании кислотно-щелочного равновесия. Глюкокортикоиды - кортизол, кортикостерон. Образуется в пучковой зоне. Участвуют в регуляции обмена у, б, ж. Регулируют процесс глюконеогенеза, в рез-те кот из аминок-т и жирных к-т образуется глюкоза. Усиливают распад белков. Увеличивают мобилизацию жира из жировых депо. Уменьшают проницаемость капилляров.

1. Возбудимые ткани, их хар-ка. Нервная и мышечная ткани могут находиться в 3 состояниях: физиологическом покое, возбуждении и торможении Физиологический покой - состояние, когда ткань не проявляет признаков деятельности. В мышцах и нервах деятельное состояние может протекать в 2 формах: возбуждении и торможении. Возбуждение - деятельное состояние ткани, в кот она приходит под влиянием раздражения. Для возбуждения характерны неспецифические (усиление обмена в-в и Е) и специфические (мышцы сокращаются) признаки. Обязательный признак возбуждения - изменение электрического заряда поверхностной клеточной мембраны. Торможение - активная форма р-ции на действие раздражителя, которая обеспечивает приспособление к среде существования. Раздражение - процесс воздействия на живую ткань раздражителя - агент, кот действует на организм, вызывает возбуждение. Все раздражители бывают адекватными (действуют на ткань в обычных условиях её существования) и неадекватными (в естественных условиях обычно не подвергается). Делят на пороговые, подпороговые, сверхпороговые. Для перехода возбудимой ткани из состояния физиологического покоя в возбуждение необходимо наличие определённой силы раздражителя, времени его действия и скорости нарастания силы. Приспособление ткани к медленно нарастающей силе раздражения - аккомодация.

2. Биоэлектрические потенциалы возбудимых тканей, история их открытия. Возникновение и распространение возбуждения связано с изменением электрического заряда на поверхности клеточной мембраны и внутри клетки. История открытия. После открытия физиками электричества было установлено, что в органах образуются электрические заряды. Наличие электрического потенциала при возбуждении было доказано в опыте вторичного сокращения - послужил началом электрофизиологии. Появились термины потенциал покоя и потенциал действия. Одной из первых теорий происхождения биоэлектрических потенциалов была диффузионная теория. Потом мембранная теория. А последняя - теория натрий-калиевого насоса. Биоэлектрический потенциал. Любая возбудимая ткань постоянно имеет заряд мембраны. Существует потенциал покоя ткани, когда с помощью натрий-калиевого насоса создаётся и поддерживается трансмембранный градиент концентрации натрия и калия с наружной и внутренней поверхностей мембраны. С помощью специальных белков - переносчиков, ферментов, некоторых органелл клетки и АТФ, против градиента концентрации из клетки выходят 3 иона Na, а входят 2 иона К. В итоге наружная поверхность любой мембраны заряжена +, а внутренняя - и создаётся разность потенциалов. Ионы Na скапливаются снаружи, а ионы К удерживаются внутри клетки. Заряд мембраны при потенциале покоя равен 60-90 минивольт. При действии раздражителя возникает пикообразные колебания потенциалов. Возникает восходящая фаза п. д, кот включает: а) деполяризацию (заряд на поверхности = 0), б) реверсию (заряд -). Нисходящая фаза, кот включает реполяризацию (заряд +). Здесь различают: следовую деполяризацию, следовую гиперполяризацию. Механизм возникновения п. д. Раздражитель пороговый или сверхпороговый - > деполяризация - > открываются максимум каналов для Na - > Na уносит заряд + с поверхности, уходит внутрь клетки - > в это время поверхность заряжается - за счёт ионов Сl-> проницаемость для Na v - > проницаемость для К ^-> К выходит на поверхность и приносит + - > возникает активация натрий-калиевого насоса - > п. д - > возникает возбуждение = нервный импульс. Если раздражитель слабый, деполяризация будет, но она не достигнет критического уровня, а значит ПД не распространится и затухает на месте - местный потенциал.

3. Парабиоз, его стадии, физиологические механизмы их возникновения. При воздействии на нерв альтернирующим вещ-вом (новокаин) через некоторое время на разные по силе и частоте раздражения мышца начинает отвечать одинаковыми сокращениями - уравнительная фаза. 2 стадия - при слабых раздражениях мышца сокращается сильно, а при сильных -слабо - парадоксальная фаза. 3 - стадия торможения, при воздействии на нерв раздражителем любой силы мышца не сокращается. Стадия заканчивается состоянием, при котором отсутствуют видимые проявления жизни - возбудимость и проводимость - состояние парабиоза, а последовательные изменения - стадии парабиотического процесса.

4. Физиология нервных волокон. Нейрон сост из дендритов, аксона и рецепторов. Сущ-ют миелиновые и безмиелиновые нервные волокна. Нерв - много волокон. Мембрана покрыта 2-х слойной швановской облочкой - внутренний слой толстый из миелина, наружный тонкий с ядрами. Имеются перехваты Ранвье. Св-ва: раздражимость, возбудимость, лабильность, проводимость, изолированное проведение возбуждения, двустороннее проведение нерв импульса. Ф-ции нервн волокон: миелиновые - чувствит, двигательн нервы внутри органов. Немиелиновые - проводящие пути. Механизм проведения импульса. При возникновен на мембране пд возбуждённый участок явл раздражителем для соседних участков мембраны и если волокно миелинов, то таким участком явл перехват Ранвье - импульс продвигается скачкообразно и быстро. По безмиелинов волокну импульс продвиг медленно. Возбужден всегда продвигается вперёд от и не может вернутся обратно, т. к предыдущий участок наход всегда в состоянии абсолютной рефрактерности.

5. Физиология мышц. Св-ва мышц. Современная теория мышечного сокращения. Различ: скелетные, сердечные, гладкие. Ф-ции: передвижение в пространстве, координация частей тела, поддержание постоянства t, перемешивание в пищеварительном тракте, поддержание тонуса стенок внутрен органов. Св-ва: раздраж, возбудим, лабильность, сократимость, проводимость, растяжимость, эластичность, пластичность, автоматия. Строение - мембрана сарколемма с кровен сосудами и нервн окончаниями. Внутри саркоплазма с ядрами, митохондриями с саркоплазматич ретикулумом, миофибриллами. Между сарколеммой имеются Т - мембраны с Т-трубочками, идущими внутрь неё. Каждая миофибрилла сост из актина и миозина. Миозин - толстая нить, имеющ мостики, на них АТФ. Актин - тонкая нить из 2-х белковых спиралей. Нити актина вплетаются в Т - мембрану и отходят внутрь сарколеммы. Т-трубочки соедин с цистернами ретикулума и миофибриллами, образуя единую сеть. Одна часть мембраны этой сети ориентирована по ходу миофибрилл, а вторая поперёк. Нити миозина располог в центре саркомера друг под другом, а между ними - часть актиновых нитей. Механизм сокращения мышц. Раздражитель - > по сарколемме идёт возбуждение - > по Т-трубочкам - > внутрь волокна - > на мембраны ретикулума - > ^ проницаемость для Са, он выходит из цистерн, идёт на мостики миозина и перемещает АТФ от основания мостика к его вершине - > параллельно Са идёт на актин, открывается его активные центры - > возбужден вызывает выход Mg - > он идёт на мостики миозина и активирует АТФазу - > АТФ разрушается и выделяется Е - > мостик взаимодействует с активным центром актина - > угол наклона мостика изменяется от 45 до 90 - > нити актина вдвигаются между нитями миозина - > возникает скольжение актинов и миозинов нитей - > происходит укорочение мышечного волокна, без изменения длины актинов и миозинов нитей. Расслаблен мышцы - все процессы в обратном порядке.

6. Механизм передачи возбуждения в нервно-мышечном синапсе. Синапс сост из пресинаптической мембраны, синоптической щели, постсинаптич мембраны. В нервно-мышечном синапсе импульс приход к утолщен аксона, повышается проницаемость мембран пузырьков - > пузырьки приближаются к пресинаптической мембране и лопаются - > находящийся в них медиатор выходит в синоптическую щель - > молекулы медиатора взаимодействуют с рецепторами постсинаптич мембр - > медиатор разрушается ферментом, находящимся в рецепторе - > ф-т растрачивается и ^ проницаемость постсинаптич мембраны - > возникает Na-K - насос и пд = возбуждение.

7. Основные св-ва нервной и мышечной ткани. Фазовые изменения возбудимости при возбуждении.

1) Раздражимость - неспецифическая р-ция с изменением обмена в-в внутри клетки, повышением потребления О2, t и Е.

2) Возбудимость - специфическая р-ция, с возникновением п. д. Изменение возбудимости в процессе возникновения возбуждения: а) во время возникновения перезарядки мембраны возбуждение = 0 => - состояние абсолютной рефрактерности, б) в процессе восстановления возбудимости - состояние относительное рефрактерности, в) при подготовке ткани к повторному возбуждению- экзальтация.

3) Лабильность -работоспособность ткани. При развитии организма лабильность ^, при старении - v.

1. Основные этапы развития физиологии как науки. Сведения о строении и функциях организма систематизировал и изложил в сочинениях Гиппократ (5-4 в до н. э). Гален описал строение стенок желудка, киш-ка, кров сосудов, матки. Изучал роль нс в организме (2 в н. э). Начало физиологии, как экспериментальной науки, изучающей процессы, протекающие в здоровом организме, положил Гарвей (17 в). Исследовал дв-е крови. Он применил новый метод исследования - вивисекция (живосечение). Декарт открыл явление рефлекса, т. е. отражение организмом воздействие окр ср. Основоположником русской науки в 18 в - Ломоносов - открыл закон сохранения материи и Е, доказал, что воздух является смесью газов. В 19 в Мажанди установил раздельное существование чувствительных и двигательных нервных волокон. Мюллер первым описал ф-ции ЖВС (щит, надпочечники). Раймон создал представление о возникающих электрических явлениях в тканях при возбуждении. Гельмгольц изучил проведение возбуждения в нервах. Эти учёные были основателями физико-химического направления в физиологии. Бернар выяснил роль пищеварительных соков, ф-ции печени в образовании и обмене гликогена и глюкозы. Основоположником экспериментальной физиологии в России был Филомафитский, кот выпустил учебник по физиологии. Основоположником современной физиологии явл Сеченов, кот открыл явление торможения в цнс, сформулировал положение, что в основе деятельности головного мозга лежит рефлекторная деятельность и все сознательные и бессознательные акты по своему происхождению - рефлексы. Введенский - теория парабиоза. Павлов создал новое направление в физиологии - синтетическая физиология - изучение жизненных процессов в целостном организме при его разнообразных взаимоотношениях с окр ср. Он создал новый метод исследования - хронический эксперимент. Разработал теорию нервизма. Ввел понятие условного рефлекса. Открыл основные закономерности ВНД и указал пути, по кот идёт эволюция цнс, каким способом происходит приспосабливание животного к окр ср.

3. Гомеостаз, саморегуляция функций - основной механизм поддержания гомеостаза - постоянство хим и физико-химич св-в внутренней среды. Он выражается наличием устойчивых количественных показателей, характеризующих нормальное состояние организма: t тела, осмотическое Р крови и тканевой жидкости. Организм - саморегулирующая система, реагирующая как единое целое на различные воздействия внешней ср. Ф-ции и р-ции в нём регулируются 2-мя системами (гуморальная и нервная). Гуморальная осуществляется при помощи в-в, циркулирующих в кр организма. Все органы и ткани в процессе жизнедеятельности вырабатывают специфические в-ва, участвующие в регуляции различных ф-ций организма. Секреты эндокринных желёз уч-ют в контроле биологических процессов: рост, размножение, влияют на обмен в-в, Е. Животные обладают ещё одной важнейшей связью - через нс. Нс координирует деятельность внутренних систем организма, и взаимодействие и уравновешивание его с окр ср. Принцип подчинённости всей жизнедеятельности организма жив влиянию нс - нервизм. Основную работу нс системы составляет рефлекс. Рефлекс - ответная р-ция организма на раздражение, осуществляемая через цнс. Раздражение воспринимается рецепторами, и возникающее возбуждение передаётся по центростремительным нервным волокнам в афферентные нервные центры, отсюда возбуждение передаётся по моторным нейронам, которые проводят возбуждение к рабочим органам. Нервный путь по которому проходит возбуждение - рефлекторной дугой.

4. Иммунитет, его значение. Иммунная система, центральные и периферические лимфоидные органы, их взаимодействие. Иммунитет - состояние специфической невосприимчивости организма к действию болезнетворных агентов, продуктов их жизнедеятельности, а т\ж других чужеродных в-в. Различают: клеточный - связан с защитным действием Т-лимфоцитов. Гуморальный - системой В-лимфоцитов, синтезирующие а/т. Ведущую роль в иммунитете играют Т-лимфоциты. Среди них выделяют группы:.

1) хелперы - взаимодействуют с В-лимфоцитами и превращают их в плазматические клетки.

2) супрессоры - подавляют чрезмерные р-ции В-лимфоцитов и поддерживают постоянное соотношение различных форм лимфоцитов.

3) киллеры - взаимодействуют с чужеродными клетками и разрушают их.

4) клетки иммунной памяти.

5) амплифайеры - активируют киллеры. Лимфоидные органы иммунной системы делятся на центральные (тимус, костный мозг, фабрициева сумка) и периферические (кровь, селезёнка, лимфатические узлы). Тимус - регулирует ф-ции других лимфоидных органов. Продуцирует гормон - тимозин. В нём происходит дозревание Т-лимфоцитов. Фабрициева сумка. Ответственна за развитие гуморального иммунитета птиц. Костный мозг -основн орган гемопоэза, в нём находятся стволовые клетки, из кот образуются Т - и В-лимфоциты. В нём созревают В - лимфоцитов. Лимфатические узлы - через них проходит лимфа, кот явл фильтром, улавливающим а/г. Селезёнка - в белой пульпе обнаружены Т и В-лимфоциты и макрофаги. Здесь осуществляется иммунный контроль крови и её эритроцитов. Удаляет из крови утратившие активность эритроциты и лейкоциты. Кровь - дискретная иммунная система, представлена отдельными лимфоидными кл различного назначения, а т/ж гранулоцитами и моноцитами.

1. Спинной мозг, его центры, проводящие пути, рефлекторная деятельность. Спинной мозг - отдел цнс. Афферентные чувствительные нервные волокна входят в дорсальные рога через спинномозговые ганглии, дорсальные корешки. Все эфферентные нервные волокна выходят из вентральных рогов спинного мозга в составе вентральных корешков. Дорсальные и вентральные корешки сливаются, образуя смешанные нервы. Спинной мозг выполняет 2 ф-ции; рефлекторную и проводниковую. Рефлекторная ф-ция. В спинном мозге находятся центры многих рефлексов. В шейных позвонках - центр сокращения диафрагмы, а в крестцовом отделе центры дефекации и мочеполовых рефлексов. От спинного мозга отходят часть парасимпатических и все симпатические волокна, поэтому он принимает уч-ие в процессах, происходящих во внутренних органах. Проводниковая ф-ция. Проводящие пути делят на нисходящие и восходящие. Восходящие пути. Латеральный и вентральный спино-таламические тракты проводят импульсы болевой и температурной чувствительности в кору больших полушарий. Дорсальный спино-мозжечковый тракт оканчивается у клеток коры мозжечка и несет импульсы от рецепторов мышц и связок конечностей. Вентральный спино-мозжечковый волокна доходят до мозжечка и несут импульсы от мускулатуры туловища. Нисходящие пути. Пирамидные тракты - оканчиваются у двигательных клеток передних рогов. Рубро-спинальный проводит импульсы от мозжечка, к мотонейронам спинного мозга. Вестибуло-спинальные тракты: из двух вестибуло-спинальных трактов: передают импульсы от вестибулярного аппарата и мозжечка к мотонейронам, регулирующим тонус мускулатуры, согласованность движений и равновесие. Ретикуло-спинальньй тракт.

2. Средний мозг. Ф-ции четверохолмия, красного ядра, чёрной субстанции. Сост из 2 частей: дорсальной и базальной. Дорсальная - четверохолмие, в котором расположены центры зрительных и слуховых ориентировочных рефлексов. Передние бугры связана с ориентировочными зрительными рефлексами, а пара задних с акустическими. Базальная часть - это его ножки. Каждая ножка состоит из 3 частей: покрышки, чёрной субстанции и основания. Покрышка - находятся красное ядро и ядра блокового и глазодвигательного нервов, кот идут к мышечному аппарату глазного яблока, обеспечивая движения глаз. Красное ядро - крупное скопление сёрого в-ва. Оказывает регулирующее влияние на центры продолговатого мозга. Оно играет роль в координации двигательных актов. Чёрная субстанция образована интенсивно окрашенными нервными клетками. Уч-ет в регуляции движений. Основание ножки состоят из волокон нисходящих и восходящих трактов.

3. Мозжечок. Влияние его на мышечный тонус и коррекцию движений. Участие мозжечка в регуляции вегетативных функций организма. Регуляции мышечного тонуса и координации движений. При удалении его нарушается мышечный тонус. Первый симптом после удаления мозжечка - атония - тонус резко ослаблен или отсутствует. Второй - атаксия - движения плохо координированы, нет соответствия между характером выполняемых движении и силой сокращения мышц. Третий - астазия - жив не может стоять неподвижно, все время качается. У животных без мозжечка наблюдают астению - при работе мускулатура очень быстро утомляется. Между мозжечком и корой больших полушарий существует тесная взаимосвязь, они оказывают определенное влияние друг на друга. Мозжечок помогает коре при выполнении сложнокоординированных уточненных двигательных актов. Мозжечок влияет на вегетативные ф-ции. Раздражение его сопровождается расширением зрачков, повышением артериального Р, учащением пульса, восстановлением работоспособности утомлённых мышц. После удаления мозжечка моторная ф-ция киш-ка ослабляется, секреция желудочного и киш соков тормозится - возбуждение симпатической нс. В мозжечке лежат центры симпатической и парасимпатической иннервации.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать