Исследование возможности реализации обучающей, развивающей и воспитывающей функциий естественнонаучного образования при изучении темы "Белки. Нуклеиновые кислоты"
p align="left">Химия - наука экспериментальная. Наблюдения, опыты являются источником знаний о природе химических явлений. Наблюдения, измерения и анализ полученных результатов, которые производят учащиеся на практических занятиях, являются по существу воспроизведением основных методов химии как науки. Ученики, которые имеют склонность к выполнению эксперимента и не находят подкрепления и развития этих склонностей на занятиях, постепенно утрачивают интерес к продолжению занятий химией.

Преимуществами химического эксперимента в форме выполнения лабораторной работы являются высокая степень активности и самостоятельности школьников, выработка умений работы с химическими реактивами и навыков обработки результатов наблюдений и измерений, возможность проведения эксперимента или наблюдения по индивидуальному плану и в темпе, определяемом самим учащимся. Не последним по значению является и такой фактор, как устранение посредника между учеником и изучаемым явлением природы.

Выполнение лабораторных работ химического практикума открывает большие возможности для учета индивидуальных интересов и склонностей учащихся, развития их творческих способностей. В практикуме можно поставить работы, различные по уровню сложности и характеру заданий. Одних можно снабдить подробными инструкциями, других - краткими указаниями, третьим - лишь сформулировать задачу, для решения которой ученику необходимо самостоятельно подобрать реактивы и разработать схему выполнения эксперимента.

Простоту и доступность лабораторной работы вовсе не следует рассматривать как отрицательное качество. Именно простые работы по наблюдению химических процессов и явлений позволяют воздействовать не только на разум, но и на чувства учащихся, помогают им понять, чем может химия заинтересовать человека на всю жизнь.

Разработанные в данной работе лабораторные работы по химии высокомолекулярных соединений достаточно просты, но требуют от учащихся осмысленного подхода к выполнению. Для этих работ не нужно сложного оборудования. Но при их выполнении школьники и студенты приобретут теоретические, практические и исследовательские навыки. Эти занятия научат учащихся:

· выполнять задания осмысленно, т.е. действовать с пониманием процедуры, четко, логически последовательно, грамотно и в оптимальном варианте;

· разграничивать известную и неизвестную информацию;

· выдвигать идею и разрабатывать план её осуществления;

· видеть причину события, явления;

· связывать теорию и практику;

· проводить анализ данных и синтез информации, делать выводы.

Прав физик Луи де Броль, сказавший: „Удивление - мать открытия“. Что в обучении химии чаще всего ставит ученика в проблемную ситуацию, которой предшествует удивление? Это химические реакции, которые сопровождается яркими наглядными эффектами, необычными явлениями. Они являются сильнейшими возбудителями познавательного интереса, обостряющими эмоционально - мыслительные процессы при обучении химии. Лабораторная работа, включающая в себя разнообразные химические реакции, создает определенный эмоциональный настрой учеников (поисковый интерес при проведении опытов) и заставляет наблюдать, искать, догадываться, находить выход из возникшей проблемной ситуации. Таким образом, разработка доступных лабораторных работ проблемно-развивающего характера способствует активизации всей познавательной деятельности учащихся, а также развитию мышления и формированию интеллекта.

Глава II. ТЕМА «БЕЛКИ. НУКЛЕИНОВЫЕ КИСЛОТЫ» В КУРСЕ ХИМИИ СРЕДНЕЙ ШКОЛЫ И ВУЗА

2.1 Программные требования к преподаванию темы «Белки. Нуклеиновые кислоты» в средней школ

№ урока

Тема занятия

Вводимые опорные понятия

и представления.

Формирование специальных навыков

Актуализация опорных знаний, умений, навыков по химии и междисциплинарным наукам

1.

Белки - строение и свойства (2 часа)

Знать основные аминокислоты, образующие белки; понятие о первичной, вторичной и третичной структуре белков; свойства белков - гидролиз, денатурация, цветные реакции; превращения белков пищи в организме; иметь представление об успехах в изучении строения и синтезе белков.

Закрепление и углубление знаний об азотсодержащих органических соединениях, изомерии органических соединений, роли белков как биополимеров и нуклеиновых кислот в жизнедеятельности организмов.

2.

Нуклеиновые кислоты (1 час)

Знать состав нуклеиновых кислот (ДНК, РНК); строение нуклеотидов; принцип комплементарности в построении двойной спирали ДНК.

Демонстрации. Доказательство наличия функциональных групп в растворах аминокислот.

Лабораторные опыты. Решение экспериментальных задач на получение и распознавание органических веществ.

Практические занятия. Распознавание органических веществ по характерных реакциям; установление принадлежности вещества к определенному классу [45, 46].

2.2 Программные требования к преподаванию темы «Белки. Нуклеиновые кислоты» в вузе

пп

Тема лекции

Содержание

Объем в час.

1

Белки. Нуклеиновые кислоты (НК).

Белки и НК как биополимеры. Состав, структура, свойства и функции белков. Ферменты - биокатализаторы. ДНК и РНК, их состав, свойства и функции. Принцип комплементарности. Биосинтез белка.

2

Согласно программе по химии высокомолекулярных соединений после изучения темы «Белки. Нуклеиновые кислоты» студент должен знать:

ь иметь представление о белках и биологически активных веществах, структуре и свойствах важнейших типов биомолекул;

ь основные физические свойства, способы идентификации и физико-химические методы исследования аминокислот, белков и нуклеиновых кислот;

ь химические свойства аминокислот, белков и нуклеиновых кислот;

ь нахождение в природе, использование в промышленности и народном хозяйстве аминокислот, белков и нуклеиновых кислот.

должен уметь:

ь теоретически обосновать методы получения данных соединений;

ь синтезировать, исследовать и идентифицировать аминокислоты, белки и нуклеиновые кислоты;

ь выносить научно-обоснованное суждение об изученных закономерностях [47].

2.3 Теоретическая поддержка темы

2.3.1 Аминокислоты

Аминокислоты - органические соединения, в молекулах которых содержатся одновременно аминогруппа -
NH2 и карбоксильная группа -COOH.

Их можно рассматривать как производные карбоновых кислот, получающихся замещением одного или нескольких атомов водорода в углеводородном радикале аминогруппами. Например:

Все аминокислоты, которые содержатся в белках любого происхождения, делят на 2 группы: ациклические (нециклические) и циклические.

Алициклические подразделяются на 3 подгруппы:

1) Моноаминомонокарбоновые - аминокислоты, содержащие одну амино- и карбоксильную группу.

б-аминоуксусная кислота (глицин) б-аминопропионовая кислота (аланин)

б-амино-в-гидроксопропионовая б-амино-в-меркаптопропионовая

кислота (серин) кислота (цистеин)

б-амино-в-оксимасляная кислота б-амино-в-тиометилмасляная

(треонин) кислота (цистеин)

б-амино-в-изовалерьяновая кислота б-амино-в-изокапроновая кислота изолейцин

(валин) (лейцин)

2) Диаминомонокарбоновые - аминокислоты, содержащие две амино- и одну карбоксильную группу.

аспаргин диаминокапроновая кислота (лизин)

аргинин глутамин

3) Моноаминодикарбоновые - аминокислоты, содержащие одну амино- и две карбоксильные группы.

аспарагиновая кислота (аминоянтарная) глутаминовая кислота (аминоглутаровая)

Циклические:

б-амино-в-фенилпропионовая б-амино-в-параоксифенилаланин кислота (фенилаланин) (тирозин)

б-амино-в-имидазолпропионовая б-амино-в-индолилпропионовая пролинкислота (гистидин) кислота (триптофан)

Номенклатура

Названия аминокислот производятся от названий соответствующих кислот с добавлением приставки амино-.

Тривиальная номенклатура. Аминокислоты, входящие в состав белков, имеют исторически сложившиеся практические названия. Например: аминоуксусная кислота - гликокол или глицин H2N-CH-COOH и т.д [48, 49-51].

Изомерия

Изомерия аминокислот зависит от расположения аминогруппы и строения углеводородного радикала. По расположению аминогруппы (по отношению к карбоксилу) различают: - аминокислоты (аминогруппа находится у 1 атома углерода), - аминокислоты (аминогруппа находится у 2 атома углерода), - аминокислоты (аминогруппа находится у 3 атома углерода) и т.д.

Например: CH3-CH2-COOH пропионовая кислота;

- аминопропионовая кислота; - аминопропионовая кислота.

Изомерия, обусловленная разветвлением углеводородного радикала - например, формулы изомерных соединений состава C3H6(NH2)COOH:

б-аминомасляная кислота в-аминомасляная кислота

в-аминоизомасляная кислота

Все природные аминокислоты не ароматического ряда, за исключением глицина, являются оптически активными и относятся к L-ряду, т.е. все вращают плоскость поляризации света влево:

D-аланин L-аланин

Организм животных и человека усваивает только L-аминокислоты [48, 49-51, 53-57].

Получение аминокислот

1. Общий уровень синтеза аминокислот любого строения - замена на аминогруппу галогена в галогензамещенных кислотах, например:

б-бромпропионовая к-та б-аминопропионовая к-та

-хлормасляная кислота -аминомасляная кислота

2. Удобный метод получения -аминокислот предложен Н.Д. Зелинским. Исходными веществами служат альдегиды или кетоны:

3. Для получения -аминокислот можно воспользоваться присоединением аммиака к двойной связи - , - непредельных кислот:

кротоновая кислота в-аминомасляная кислота

4.Восстановлением оксимов и гидрозонов кетокислот:

ацетоуксусный эфир

5. Ароматические аминокислоты могут быть получены восстановлением нитропроизводных карбоновых кислот аренов:

Физические свойства

Аминокислоты - бесцветные кристаллические вещества с высокой температурой плавления (150 - 330С). Плавятся с разложением, нелетучи. Хорошо растворяются в воде и плохо в органических растворителях.

Химические свойства

Аминокислоты являются амфотерными соединениями, сочетающими в себе свойства кислот и оснований [49-51, 53-57].

Аминокислоты взаимодействуют со щелочами и кислотами с образованием солей:

2. Способность вступать в реакцию конденсации друг с другом с отщеплением воды и образованием линейных, циклических и линейно- циклических полимеров.

а) - аминокислоты могут образовать циклические амиды, построенные из двух молекул - аминокислот, такие соединения называются дикетопиперазинами:

б) - аминокислоты легче других теряют молекулы аммиака и превращаются в непредельные кислоты:

в-аминомасляная кислота кротоновая кислота

в) - аминокислоты образуют внутримолекулярные циклические амиды- лактамы:

-аминомасляная кислота лактам--аминомасляной кислоты

Применение

Аминокислоты необходимы для построения белков живого организма. Человек и животные получают их в составе белковой пищи. Многие аминокислоты применяются в медицине как лечебные средства, а некоторые используются в сельском хозяйстве для подкормки животных. Неразветвленные аминокислоты, как содержащие две функциональные группы, используются для производства синтетических волокон, в том числе капрона и энанта [49-51, 53-57].

2.3.2 Белки

Белки (полипептиды) - биополимеры, построенные из остатков
-аминокислот, соединенных пептидными (амидными) связями.

Формально образование белковой макромолекулы можно представить как реакцию поликонденсации -аминокислот :

При взаимодействии двух молекул -аминокислот происходит реакция между аминогруппой одной молекулы и карбоксильной группы - другой. Это приводит к образованию дипептида.

Из трех молекул -аминокислот (глицин+аланин+глицин) образуется трипептид: H2N-CH2CO-NH-CH(CH3)-CO-NH-CH2COOH

Аналогично происходит образование тетра-, пента- и полипептидов. Молекулярные массы различных белков составляют от 10 000 до нескольких миллионов. Макромолекулы белков имеют стеререгулярное строение, исключительно важное для проявления ими определенных биологических свойств.

Несмотря на многочисленность белков, в их состав входят остатки лишь 22 -аминокислот.

Функции белков в природе универсальны:

· каталитические (ферменты);

· регуляторные (гормоны);

· структурные (кератин шерсти, фиброин шелка, коллаген);

· двигательные (актин, миозин);

· транспортные (гемоглобин);

· запасные (казеин, яичный альбумин);

· защитные (иммуноглобулины) и т.д.

Разнообразные функции белков определяются -аминокислотным составом и строением их высокоорганизованных макромолекул. Выделяют 4 уровня структурной организации белков [57 60].

Первичная структура - определенная последовательность -аминокислотных остатков в полипептидной цепи.

Вторичная структура - конформация полипептидной цепи, закрепленная множеством водородных связей между группами N-H и С=О. Одна из моделей вторичной структуры - -спираль, обусловленная кооперативными внутримолекулярными Н-связями.

Другая модель - b-форма ("складчатый лист"), в которой преобладают межцепные (межмолекулярные) Н-связи.

Третичная структура - форма закрученной спирали в пространстве, образованная главным образом за счет дисульфидных мостиков -S-S-, водородных связей, гидрофобных и ионных взаимодействий.

Четвертичная структура - агрегаты нескольких белковых макромолекул (белковые комплексы), образованные за счет взаимодействия разных полипептидных цепей

2.3.3 Нуклеиновые кислоты

Нуклеиновые кислоты - это биополимеры, макромолекулы которых состоят из многократно повторяющихся звеньев - нуклеотидов. Поэтому их называют также полинуклеотидами. В состав нуклеотида входят три части:

· азотистое основание - пиримидиновое или пуриновое

· моносахарид - рибоза или 2-дезоксирибоза;

· остаток фосфорной кислоты.

Нуклеотид - фосфорный эфир нуклеозида. В состав нуклеозида входят моносахарид (рибоза или дезоксирибоза) и азотистое основание [57].

Ди- и полинуклеотиды

При конденсации под действием катализаторов (или ферментов) из двух нуклеотидов образуется динуклеотид:

Поликонденсация различных нуклеотидов приводит к образованию полинуклеотидов (нуклеиновых кислот). Полинуклеотиды относят к кислотам, т.к. в каждом структурном звене их макромолекул содержится остаток ортофосфорной кислоты, определяющий кислотные свойства за счет диссоциации связи О-Н. В зависимости от того, какой моносахарид содержится в структурном звене полинуклеотида - рибоза или дезоксирибоза, различают рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК). Так, главная (сахарофосфатная) цепь в ДНК содержит остатки 2-дезоксирибозы:

Молекулярная масса ДНК достигает десятков миллионов. Молекулярная масса РНК ниже - десятки тысяч и менее [56-58].

ДНК (дезоксирибонуклеиновые кислоты)

Макромолекула ДНК представляет собой две параллельные неразветвленные полинуклеотидные цепи, закрученные вокруг общей оси в двойную спираль.

Такая пространственная структура удерживается множеством водородных связей, образуемых азотистыми основаниями, направленными внутрь спирали.

Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum - дополнение).

Образование водородных связей между комплементарными парами оснований обусловлено их пространственным соответствием. Пиримидиновое основание комплементарно пуриновому основанию:

Водородные связи между другими парами оснований не позволяют им разместиться в структуре двойной спирали. Таким образом,

· ТИМИН (Т) комплементарен АДЕНИНУ (А),

· ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).

·

Способность ДНК не только хранить, но и использовать генетическую информацию определяется следующими ее свойствами:

молекулы ДНК способны к репликации (удвоению), т.е. могут обеспечить возможность синтеза других молекул ДНК, идентичных исходным

молекулы ДНК могут направлять совершенно точным и определенным образом синтез белков, специфичных для организмов данного вида [57].

2.4 Анализ учебного материала в школьной программе

В курсе биологии учащиеся получили первоначальные сведения о белках и нуклеиновых кислотах. Эти знания, наряду со знаниями, полученными в курсе органической химии, станут опорными при изучении химии белков и нуклеиновых кислот.

Раздел «Нуклеиновые кислоты» изучается с целью подготовки учащихся к усвоению роли нуклеиновых кислот в биосинтезе белков и передачи организмами признаков наследственности. Эти вопросы, изучаемые в курсе общей биологии, имеют большое значение для формирования материалистических представлений о сущности явлений жизни.

На уроках органической химии учащиеся знакомятся с составом и строением нуклеотидов, узнают, как из нуклеотидов образуется первичная структура нуклеиновых кислот, в чем заключаются особенно дезоксирибонуклеиновой кислоты (ДНК), как происходит удвоение двойной спирали ДНК при делении клеток. Такие знания позволяют им понять, как в последовательности нуклеотидов кодируется последовательность аминокислотных звеньев в синтезируемом белке, как считывается информация об этом с макромолекул ДНК, какова роль других нуклеиновых кислот в синтезе белковых молекул, осуществляемом на рибосомах в клетке [52-54].

При обсуждении двойной спирали ДНК обогащаются знания учащихся о водородной связи. Здесь они встретятся с примерами установления связи чрез водородные атомы не только с атомами кислорода, но и с атомами азота, несущими достаточный отрицательный заряд. Это позволяет объяснить ряд новых для учащихся явлений химии.

Анализ материала по теме «Белки. Нуклеиновые кислоты», представленный в различных учебниках [47, 48], показал, что в учебнике [50] материал дан доступно, логически последовательно и в то же время развернуто. Однако на сегодняшний день в школах республики наиболее распространен комплект учебников авторов Рудзитис Г. Е., Фельдман Ф. Г. [49, 53].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



Реклама
В соцсетях