Методика решения задач повышенной трудности в старших классах средней школы
p align="left">Подсказка содержится в тексте задачи. Учащимся предлагается в классе прочитать первые два предложения и подумать над подсказкой.

Изобразим отрезок и отметим на нем точки. Отрезок KL составляет длины отрезка MN, длины отрезка NK, длины отрезка ML, 1 длины отрезка MK, 1 длины отрезка NL.

5. Решите задачу подбором. Из 29 коробок часть содержит по 14 кг конфет, а часть по 15 кг. Сколько тех и других коробок, если общая масса конфет в коробках обоих типов одинаковая?

Внимательно изучив данные, видим, что 14 + 15 = 29. Значит коробок, в которых по 14 кг должно быть 15, а тех, в которых по 15 кг - 14 [1].

6. Пассажир поезда, идущего со скоростью 50 км/ч, заметил, что встречный поезд шел мимо него в течение 10 секунд. Определите длину встречного поезда, если его скорость - 58 км/ч.

Какие величины в задаче известны? Сделаем рисунок:

Длина поезда - это расстояние от начала головного вагона до конца хвостового вагона. Какие величины мы обычно используем, чтобы найти расстояние?

Как бы вы решали задачу, если бы поезд, в котором сидел пассажир, стоял на месте?

Решение.

1) 50 + 58 = 108 км/ч скорость, с которой встречный поезд проехал мимо пассажира.

2) 108 (км/ч) = (108 1000) : 3600 (м/с) = 30 (м/с).

3) 30 10 = 300 (м) - длина поезда.

Ответ: 300 м.

7. На отдельном листе бумаги, используя чашку вместо циркуля, проведите карандашом окружность. Вырежьте получившийся круг и подумайте, как при помощи перегибания найти его центр. Подумайте, как найти центр круга в случае, если круг перегнуть нельзя.

Выполнение первого задания - найти центр вырезанного круга перегибанием, как правило, затруднений не вызывает.

Если же круг перегнуть нельзя, то центр найти сложнее. Здесь учащимся следует предложить подумать, какие из свойств углов и окружностей, с которыми они знакомы, можно использовать в этой задаче. Оказывается, достаточно построить прямой угол BAC, где точки A, B, C принадлежат окружности, тогда BC - диаметр, а его середина - центр окружности.

Эти модели способствуют развитию у детей конкретного и абстрактного мышления во взаимосвязи между собой, т.к. модель задачи, с одной стороны, дает возможность школьнику в наглядной форме конкретно представить зависимости между величинами, входящими в задачу, а с другой _ способствует абстрагированию, помогает отвлечься от сюжетных деталей, от предметов, описанных в тексте задачи [2].

Методика рассматривает несколько методов решения задач _ алгебраический, арифметический, графический, практический, метод предположения, метод перебора. Они могут применяться как при решении стандартных задач, так и нестандартных. Алгебраический метод решения задач развивает теоретическое мышление, способность к обобщению, формирует абстрактное мышление и обладает такими преимуществами, как краткость записи и рассуждений при составлении уравнений, экономит время. Арифметический метод решения также требует большого умственного напряжения, что положительно сказывается на развитии умственных способностей, математической интуиции, на формировании умения предвидеть реальную жизненную ситуацию. Часто встречаются задачи, которые можно решить методом перебора. При этом ученик как бы экспериментирует, наблюдает, сопоставляет факты и на основании частных выводов делает те или иные общие заключения. В процессе этих наблюдений обогащается его реально-практический опыт.

Именно в этом и состоит практическая ценность задач на перебор. При этом слово "перебор" используется в смысле разбора всех возможных случаев, которые удовлетворяют условие задачи, показав, что других решений быть не может. Встречаются задачи, в которых алгебраический или арифметический метод недостаточно эффективен. В этом случае при поиске решения используется метод предположения.

В математике нет каких-либо общих правил, позволяющих решить любую нестандартную задачу, т.к. такие задачи в какой-то степени неповторимы. Нестандартная задача в большинстве случаев воспринимается как вызов интеллекту и порождает потребность реализовать себя в преодолении препятствия [10].

Глава 2. МЕТОДИКА РЕШЕНИЯ НЕСТАНДАРТНЫХ ЗАДАЧ В СТАРШИХ КЛАССАХ

2.1. Особенности решения текстовых задач

С термином «задача» люди постоянно сталкиваются в повседневной жизни как на бытовом, так и на профессиональном уровне. Каждому из нас приходится решать те или иные проблемы, которые зачастую мы называем задачами. Это могут быть общегосударственные задачи (освоение космоса, воспитание подрастающего поколения, оборона страны и т.п.), задачи определенных коллективов и групп (сооружение объектов, выпуск литературы, установление связей и зависимостей и др.), а также задачи, которые стоят перед отдельными личностями. Проблема решения и чисто математических задач, и задач, возникающих перед человеком в процессе его производственной или бытовой деятельности, изучается издавна, однако до настоящего времени нет общепринятой трактовки самого понятия «задача». В широком смысле слова под задачей понимается некоторая ситуация, требующая исследования и разрешения человеком (или решающей системой).

Отдельно стоят математические задачи, решение которых достигается специальными математическими средствами и методами. Среди них выделяют задачи научные (например, теорема Ферма, проблема Гольбаха и др.), решение которых способствует развитию математики и ее приложений, и задачи учебные, которые служат для формирования необходимых математических знаний, умений и навыков у разных групп обучаемых (школьников, слушателей курсов, студентов и др.) и направлены на изменение качеств личности обучаемого (не знал - знаю, не умел - умею и т.п.).

Учебные математические задачи различаются по характеру их объектов. В одних задачах все объекты математические (числа, геометрические фигуры, функции и т.п.), в других объектами являются реальные предметы (люди, животные, автотранспортные и механические средства, сплавы, жидкости и т.д.) или их свойства и характеристики (количество, возраст, скорость, производительность, длина, масса и т.п.). Задачи, все объекты которых математические (доказательства теорем, вычислительные упражнения, установление признаков изучаемого математического понятия и т.д.), часто называют математическими заданиями.

Математические задачи, в которых есть хотя бы один объект, являющийся реальным предметом, принято называть текстовыми (сюжетными, практическими, арифметическими и т.д.). Перечисленные названия берут начало от способа записи (задача представлена в виде текста), сюжета (описываются реальные объекты, явления, события), характера математических выкладок (устанавливаются количественные отношения между значениями некоторых величин, связанные чаще всего с вычислениями). В последнее время наиболее распространенным является термин «текстовая задача».

Текстовой задачей будем называть описание некоторой ситуации (явления, процесса) на естественном и (или) математическом языке с требованием либо дать количественную характеристику какого-то компонента этой ситуации (определить числовое значение некоторой величины по известным числовым значениям других величин и зависимостям между ними), либо установить наличие или отсутствие некоторого отношения между ее компонентами или определить вид этого отношения, либо найти последовательность требуемых действий.

Придерживаясь современной терминологии, можно сказать, что текстовая задача представляет собой словесную модель ситуации, явления, события, процесса и т.п. Как в любой модели, в текстовой задаче описывается не все событие или явление, а лишь его количественные и функциональные характеристики.

Основная особенность текстовых задач состоит в том, что в них не указывается прямо, какое именно действие (или действия) должно быть выполнено для получения ответа на требование задачи.

В каждой задаче можно выделить:

а) числовые значения величин, которые называются данными, или известными (их должно быть не меньше двух);

б) некоторую систему функциональных зависимостей в неявной форме, взаимно связывающих искомое с данными и данные между собой (словесный материал, указывающий на характер связей между данными и искомыми);

в) требование или вопрос, на который надо найти ответ.

Числовые значения величин и существующие между ними зависимости, т.е. количественные и качественные характеристики объектов задачи и отношений между ними, называют условием (или условиями) задачи. В задаче обычно не одно, а несколько условий, которые называют элементарными.

Требования могут быть сформулированы как в вопросительной, так и в повествовательной форме, их также может быть несколько. Величину, значения которой требуется найти, называют искомой величиной, а числовые значения искомых величин - искомыми, или неизвестными.

Систему взаимосвязанных условий и требований называют высказывательной моделью задачи. Для того чтобы уяснить структуру задачи, надо выявить ее условия и требования, т.е. построить высказывательную модель задачи [10,19,20].

1. Из пункта А одновременно стартуют три бегуна и одновременно финишируют в том же пункте, пробежав по маршруту, состоящему из прямолинейных отрезков АВ, ВС, СА, образующих треугольник АВС. На каждом из указанных отрезков скорости у бегунов постоянны и равны: у первого - 10 км / ч, 16 км / ч и 14 км / ч соответственно; у второго - 12 км / ч, 10 км / ч и 16 км / ч соответственно. Третий бегун в пунктах В и С оказывается не один и меняет скорость на маршруте один раз. Установить, является ли треугольник АВС остроугольным или тупоугольным.

Решение . Обозначим стороны треугольника: . Из условия следует, что первый и последний участки - и - третий бегун пробегает вместе с первым либо со вторым; причем, если маршрут он бежит вместе с первым, то маршрут - вместе с первым, и наоборот. А поскольку он меняет скорость один раз, то его скорости на участках , и соответственно могут быть равными:

1) 10, 10, 16; 3) 12, 12, 14;

2) 10, 16, 16; 4) 12, 14, 14;

Первый вариант отпадает сразу, так как в этом случае третий бегун отстанет от второго.

По аналогичной причине отпадает второй вариант (третий бегун обгонит первого). Остаются два варианта. Соответственно имеем две системы (уравнения составляются на основании условия равенства времени, затрачиваемого на маршрут бегунами):

и

Для каждой системы легко выразить и через . Для первой системы , , - наибольшая сторона; причем < и >, так как >. Треугольник тупоугольный. Для второй системы >т.е. этот случай невозможен.

Ответ. Треугольник тупоугольный (тупым является угол АСВ).

2. Вася и Петя победили между собой 39 орехов. Число орехов, доставшихся любому из них, меньше удвоенного числа орехов, доставшихся другому. Квадрат трети числа орехов, доставшихся Пете, меньше числа орехов, доставшихся Васе. Сколько орехов у каждого?

Решение. Если мы обозначим через x и y количество орехов, доставшихся соответственно Васе и Пете, то без труда составим систему из одного уравнения и трех неравенств:

Сложность задачи в третьей части - в решении системы. При этом мы должны помнить, что x и y - целые положительные числа. Из уравнения найдем . Для y будем иметь систему из трех неравенств:

Из первых двух неравенств найдем . Последнее неравенство перепишем в виде Можно, конечно, решить это неравенство. Но лучше поступить иначе. Поскольку y - целое положительное число, то при будем иметь , а при будет , то . Таким образом, .

Ответ. 25 и 14 орехов.

3. Пункт А находится на берегу реки, ширина которой 400 м, скорость течения 3 км / ч. Пункт В расположен ниже по течению в 4 км от А (если В1 - проекция В на берег, на котором расположен А, то АВ1=4 км), на расстоянии 2 км 680 м от противоположного берега (А и В - по разные стороны реки). Турист выехал из А на лодке, пересек реку, оставил на берегу лодку, дошел до В и вернулся тем же путем. На всех участках, по реке и по суше, он двигался прямолинейно. Скорость лодки в стоячей воде 5 км / ч, скорость передвижения туриста пешком 3,2 км / ч. За какое наименьшее время мог проделать свое путешествие турист?

Решение. Пусть турист приплыл в точку С на противоположном берегу. Причем СD = x, где D - пункт, противоположный А (рис. 1,а) ( АD перпендикулярен берегам ). Если время на прохождение участка АС равно t1, то на участке CD можно найти такую точку С1, что AC1 = 5t1, C1C = 3t1.

Это означает, что вектор - путь, реально пройденный лодкой, мы представляем в виде суммы двух векторов: - путь, пройденный лодкой,

если бы не было течения, и - путь лодки под воздействием одного течения.

Рис. 1 а)

Записав для треугольника AC1D теорему Пифагора, получим

или

. (1)

Аналогично, если t2 - время на пути от C до A, определив точку С2 ниже С так, что , получим для t2 уравнение

. (2)

Поскольку t1 и t2 - положительные корни соответственно уравнений (1) и (2), то

есть время передвижения на лодке. Время движения по суше равно

.

Таким образом, время, затраченное на путешествие, будет:

2

Рис. 1 б)

Рассмотрим два прямоугольных треугольника PNM и KLP: катеты одного x и 0,32, другого 4-x и 2,68, расположенных, как показано на рисунке 1,б. Тогда

.

Длина ломанной KPM будет минимальной, если точка P лежит на отрезке

KM . Но .

Таким образом, минимальное время будет:

(ч).

Ответ. Наименьшее время, за которое турист мог проделать свое путешествие часа [21].

2.2. Методика решения уравнений и неравенств

Уравнения и неравенства _ традиционная тема школьного курса математики, занимающая большое место, начиная с младших классов, где простейшие уравнения и неравенства до введения теории на основе свойств арифметических действий, и кончая старшими классами, где решаются трансцендентные уравнения.

Уравнения и неравенства представляют собой тот алгебраический аппарат, тот язык, на который переводятся разного рода задачи, в том числе и прикладные, строятся их математические модели.

Использование монотонности функций при решении уравнений и неравенств. Одну из наиболее часто встречающихся идей хорошо иллюстрирует решение следующего простого неравенства:

1. Решить неравенство:.

Решение. Есть два стандартных пути решения: возведение в квадрат (при условии ; если же , неравенство выполняется) и замена неизвестного .

Рассмотрим еще один способ - нестандартный. Функция, расположенная в левой части, монотонно возрастает, в первой части убывает. Из очевидных графических соображений следует, что уравнение имеет не более одного решения, причем если x0 - решение этого уравнения, то при будет , а решением данного неравенства будет . Значение x0 легко подбирается: x0 = 1.

Ответ. [16].

2. Решить уравнение:.

Решение. Данное уравнение имеет очевидное решение x = 1. Докажем, что других решений нет. Поделим обе части на , получим . Левая часть представляет собой монотонно убывающую функцию. Следовательно, каждое свое значение она принимает один раз, т.е. данное уравнение имеет единственное решение.

Ответ. x = 1.

Итак, основная идея, на которой основывались решения этих двух примеров, весьма проста: если f(x) монотонно возрастает, а ц(x) монотонно убывает, то уравнение f(x) = ц(x) имеет не более одного решения, причем если x = x0 - решение этого уравнения, то при x > x0 (x входит в область определения обеих функций f(x) и ц(x)) будет f(x) > ц(x), а при x < x0 будет

f(x) < ц(x).

Стоит обратить внимание на одну модификацию этой идеи, а именно: если f(x) - монотонная функция, то из равенства f(x) = f(y) следует, что x = y [8].

3. Решить уравнение:.

Решение. Преобразуем уравнение:

.

Рассмотрим функцию .

Докажем, что при t > 1 эта функция монотонно убывает. Это можно сделать, например, стандартным образом: найти производную

и доказать, что при t > 1 . Покажем другой способ:

.

Получившаяся функция, очевидно, является убывающей (основание растет, под знаком логарифма функция убывает).

Наше уравнение имеет вид: , значит, . Слева функция возрастающая, следовательно, решение единственно, оно легко находится подбором: x = 4.

Ответ. x = 4 [13].

Уравнения вида f( f (x) ) = x. При решении уравнений указанного вида полезна бывает теорема:

Если y = f(x) - монотонно возрастающая функция, то уравнения

f(x) = x (А)

и

f (f (x)) = x (Б)

эквивалентны.

Доказательство. То, что уравнение (Б) является следствием уравнения (А), очевидно: любой корень (А) удовлетворяет (Б). (Если

f (x0) = x0, то f (f (x0)) = f (x0) = x0.). Докажем, что любой корень уравнения (Б) удовлетворяет уравнению (А). Пусть x0 такое, что f (f (x0)) = x0.Предположим, что f (x0) ? x0 и для определенности f (x0) > x0. Тогда f (f (x0)) > f (x0) > x0, что противоречит предположению ( f (f (x0)) = x0). Теорема доказана.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать