Развитие функциональной линии в курсе алгебры 7-9 классов (на примере учебников по алгебре под ред. Г.В. Дорофеева)
p align="left">Два других примера демонстрируют возможность представления на одном чертеже сразу нескольких графиков: изменения веса двух детей, бега трёх спортсменов. Рассматривая эти графики, школьники учатся сопоставлять различные характеристики изображаемых процессов и извлекать самую разнообразную информацию, причём не только количественную.

При изучении этого пункта надо дать учащимся возможность активно поработать с графиками, так как для них график является опорным образом при усвоении понятий (таких, например, как свойства функций). В ходе анализа графиков разобрать все свойства функций, которые будут изучаться в следующих пунктах.

Система упражнений.

Большая часть упражнений - это задания, в которых по известным графикам нужно ответить на серию вопросов. Также здесь приведены упражнения, где по данной таблице требуется построить график и проанализировать его (например, строится график температуры, а проанализировать необходимо изменение температуры в течение месяца). Кроме того, есть задания, в которых описана конкретная ситуация и дано несколько графиков, ученикам необходимо выбрать, на каком из графиков описана эта ситуация.

При выполнении отдельных упражнений (по выбору учителя) полезно предлагать учащимся самим придумывать вопросы по графикам или же рассказывать, какую дополнительную информацию можно извлечь из этого графика.

Комментарии к некоторым упражнениям:

№ 691. Турист в течение 30 мин дошёл от лагеря до озера, расположенного в 2 км от лагеря, и, пробыв там 40 мин, вернулся обратно. На всю прогулку он затратил полтора часа. На каком из графиков (рис. 1) изображена описанная ситуация? (На вертикальной оси отмечено расстояние туриста от лагеря.)

Рис. 1

Это упражнение нужно обязательно разобрать с учениками, так как именно при решении таких упражнений у учащиеся формируется умение сопоставлять функцию и её график.

№ 693. Олег и Пётр соревновались на дистанции 200 м в 50-метровом бассейне. Графики их заплывов показаны на рисунке 2. По горизонтальной оси отложено время, а по вертикальной - соответствующее расстояние пловца от старта.

Используя графики, ответьте на вопросы:

а) Сколько времени затратил каждый спортсмен на первые 50 м; на всю дистанцию? Рис. 2

б) Кто выиграл соревнование? На сколько секунд он обогнал соперника?

в) На сколько метров отстал проигравший от победителя к моменту финиша?

Прокомментируйте подробно весь ход соревнований.

В этом упражнении можно посоветовать учащимся перед ответом на поставленные вопросы рассмотреть графики. Целесообразно спросить их, что обозначает каждое звено изображённых на рисунке ломаных (отрезок ломаной описывает движение спортсмена на 50-метровке). Можно предложить аккуратно карандашом обозначить вершины ломаных буквами, что поможет не запутаться при ответе на вопросы.

Дополнительно, например, можно спросить, за сколько метров от финиша Пётр обогнал Олега; за сколько секунд каждый спортсмен проплыл половину дистанции; на сколько секунд быстрее Олег проплыл первую 50-метровку и др. Полезно предложить учащимся самим придумать вопросы по графику.

Выполнение задания 2 можно обыграть в форме соревнования комментаторов спортивного состязания.

№ 694. Используя графики, изображённые на рис. 2, постройте в одной системе координат графики движения этих же спортсменов, отложив по горизонтальной оси время движения, а по вертикальной - расстояние, которое проплыл спортсмен с начала заплыва.

Определите по графику:

а) среднюю скорость движения каждого спортсмена на первой 100-метровке;

б) среднюю скорость движения каждого спортсмена на всей дистанции.

Объясните, что, с точки зрения содержания задач, означают точки пересечения графиков на рис. 2 и на вашем рисунке.

Здесь нужно посоветовать учащимся, что прежде чем строить новый график, целесообразно, используя график на рис. 2, составить таблицу значений новой зависимости.

Во втором пункте «Что такое функция» вводятся понятие функции, а также некоторые связанные с ним понятия: зависимая и независимая переменные, аргумент (независимую переменную называют аргументом), область определения функции (все значения, которые может принимать аргумент, образуют область определения функции). С этого момента начинает использоваться функциональная символика . Рассматриваются способы задания функции - графически, аналитически, таблично.

Функция трактуется как зависимая переменная, значения которой однозначно определяются значениями другой переменной (переменную у называют функцией переменной х, если каждому значению х из некоторого числового множества соответствует одно определённое значение переменной у). Таким образом, можно сделать вывод, что для введения понятия функции используется генетический подход.

Цель изучения данного пункта - это ознакомление учащихся с различными ситуациями, в которых употребляется термин «функция», введение нового словаря и обучение его применению. В тексте специально подчеркивается многозначность слова «функция» и широкий диапазон его применения в математике - для обозначения и зависимой переменной, и самой зависимости, и правила, по которому устанавливается зависимость между переменными.

Особенностью принятого подхода является его явный прикладной характер (само понятие функции вводится и иллюстрируется на основе зависимостей, взятых из реальной жизни). Обращается внимание на некоторые различия в применении символики в математике и в физике, обсуждается вопрос о сужении области определения функции в практических задачах - физических, геометрических и т.д.

Система упражнений.

В данном пункте содержатся упражнения на задание формулами функций, описывающих самые разнообразные реальные ситуации (это не новая для учащихся работа, они уже много раз задавали зависимости с помощью формул). В ходе выполнения указанной группы упражнений школьники овладевают новыми понятиями и осваивают введённую терминологию. Часть упражнений этого пункта направлены на усвоение функциональной символики (при выполнении некоторых из них учащимся придётся переводить на символический язык содержательные утверждения о функциях, то есть учится различными способами выражать одну и ту же мысль). Кроме того, есть задания, где по данному значению аргумента необходимо найти значение функции и, наоборот, по значению функции найти значение аргумента с использованием формулы и графика.

Комментарии к некоторым упражнениям:

№ 700. Число диагоналей p выпуклого многоугольника является функцией числа его сторон n. Задайте эту функцию формулой. Какова её область определения? Заполните таблицу, в которой даны некоторые значения аргумента n и функции p:

p

5

10

n

14

54

Проинтерпретируйте полученные результаты на геометрическом языке.

В этом задании от учащихся требуется применить некоторые знания из геометрии.

Рассмотрим, как составляется эта функция.

Каждая из п вершин соединяется диагональю со всеми остальными вершинами многоугольника, кроме двух соседних, т.е. с (п - 3) вершинами. Умножив п на , получим удвоенное число диагоналей многоугольника (так как каждая диагональ при таком способе подсчета посчитана дважды). Чтобы получить число диагоналей многоугольника, надо это произведение разделить на 2. Получаем формулу, выражающую число диагоналей многоугольника через число его сторон: .

Область определения функции: п - натуральное число, п ? 4.

Последнее задание требует от учащихся умения объяснять числовой результат. Комментарии могут быть разными, например: «Если в многоугольнике 14 диагоналей, то у него семь сторон», «В семиугольнике 14 диагоналей» и так далее.

№ 710. Дана функция Найдите значение этой функции для значения аргумента, равного -3; -2;0; 0,1; 5.

Основная трудность для учащихся - определить, в какую формулу подставлять заданные значения аргумента. Поэтому полезно сначала предложить ученикам назвать несколько значений х, для которых значение функции вычисляется по формуле , и найти значение функции для кого-нибудь из названных значений х. Затем пусть учащиеся назовут несколько значений х, для которых значение функции равно 5.

Упражнение следует выполнять подробно - для каждого из данных чисел определить, к какому из промежутков оно принадлежит и по какой формуле надо вести вычисление ( следовательно, и т.д.).

№ 711. Дана функция Найдите значение этой функции при значении аргумента, равном:

а) ; ; ;

б) ; ; .

Это задание аналогично заданию № 710, но в вычислительном отношении труднее. Полезно ввести подробную запись:

б) =;

, ;

, .

№ 717. Пусть , . Найдите:

а) ;

в) .

Это более сложное задние на понимание символических записей, на их раскодирование. В пункте в) учащиеся фактически имеют дело со сложной функцией. Однако здесь, конечно, это понятие не вводится.

Чтобы понять смысл такой записи, как , надо просто внимательно её прочитать, а именно: значение функции f при значении аргумента, равном . Теперь ясно, как найти значение данного выражения: , .

В результате изучения пункта учащиеся должны понимать и правильно употреблять функциональную терминологию (функция, аргумент, область определения функции), записывать функциональные соотношения с использованием символического языка (). В несложных случаях выражать формулой зависимость между величинами, находить по формуле значение функции, соответствующее данному аргументу, и аргумент, которому соответствует данное значение функции.

В третьем пункте «График функции» вначале введены новые обозначения для числовых промежутков, которые уже рассматривались в 7 классе и задавались с помощью неравенств: отрезок, интервал, луч (замкнутый и открытый). Таким образом, с этого момента учащиеся могут пользоваться любым из обозначений. Например, множество чисел, больших 2, можно обозначать двумя способами: х > 2 и (2; +?).

После этого вводится собственно материал, связанный с графиками функций. Рассматриваемые в пункте две задачи являются центральными на данном этапе изучения материала. Первая - это нахождение с помощью графика значения функции, соответствующего заданному значению аргумента, а также значений аргумента, которым соответствует данное значение функции. Вторая - это построение графиков функций по точкам.

Пример, рассматриваемый в заключении, помогает разъяснить, что не всякое уравнение или график задают функцию.

Система упражнений.

В этом пункте содержатся упражнения на определение принадлежности точки графику, на сопоставление графиков и функциональных зависимостей, на определение точек пересечения графика с осями координат, на доказательство (например: докажите, что график функции целиком расположен в верхней полуплоскости). Большое внимание в упражнениях уделяется также построению графиков функций, заданных самыми разными формулами, по точкам, с помощью составления таблиц значений.

Комментарии к некоторым упражнениям:

№ 721. а) На рисунке 3 изображён график некоторой функции. Составьте по графику таблицу значений функции на промежутке [-1; 2] с шагом . Воспроизведите этот график в тетради.

б) Функция задана графиком (рис. 4). Составьте таблицу значений функции на промежутке [-1; 5] с шагом 0,5. воспроизведите этот график в тетради.

Рис. 3 Рис. 4

При выполнении таких упражнений изменяется форма задания функции без изменения способа задания. Оно полезно для формирования умения читать и строить график функции. При выполнении этого упражнения, для предупреждения ошибок, следует обратить внимание учащихся на масштаб по оси х и по оси у. Следует также заметить, что при построении графика в тетради можно взять другой масштаб, например, увеличить график, приняв за единицу 4 клетки.

№ 724. Составьте таблицу значений функции и постройте её график:

а) , где ;

б) , где .

Квадратичная функция еще не изучалась. Поэтому, чтобы аккуратно построить график, надо взять достаточно много точек из данного промежутка, например, рассматривать значения х с шагом 0,1 (или 0,2). Для облегчения работы можно воспользоваться калькулятором. Было бы хорошо, если бы работа выполнялась на миллиметровой бумаге.

Прежде чем составить таблицу значений функции, полезно обратить внимание на то, что отрезок и симметричен, поэтому составление таблицы может быть сокращено. Если сами учащиеся не заметят этой особенности формулы, можно навести их на эту мысль.

№ 738. На рис. 5 изображены графики функций , , и . Для каждого графика укажите соответствующую формулу.

Рис. 5

Чтобы соотнести график с соответствующей ему функцией, нужно использовать разные признаки. Так, график I целиком расположен ниже оси х. Это означает, что при всех значениях аргумента функция принимает отрицательные значения. Значит, этому графику может соответствовать одна из формул или (выражение, стоящие в правых частях, принимают отрицательные значения при всех значениях х). Чтобы выбрать из них нужную, вычислим ординату точки пересечения соответствующего формуле графика с осью у. Получим, что график функции проходит через точку (0; -1). Значит, графику I соответствует именно эта формула. Графику II соответствует формула , графику III -- формула и графику IV - формула, .

В результате изучения данного пункта школьники учатся описывать графическую ситуацию по-разному, используя геометрический, алгебраический, функциональный языки. Например: «функция у = f(x) принимает значение, равное 0, при х = -1 и х = 2», «график функции у = f(x) пересекает ось х в точках с абсциссами, равными -1 и 2», «уравнение f(x) = 0 имеет корни -1 и 2». То есть, учащиеся должны понимать эквивалентность соответствующих формулировок и свободно переходить от одной из них к другой.

В следующем пункте «Свойства функций» рассмотрены такие свойства функции:

1) область определения;

2) наибольшее и наименьшее значение функции;

3) нули функции;

4) промежутки знакопостоянства;

5) промежутки возрастания и убывания функции.

Цель данного пункта - это показать наглядно с помощью графиков смысл вводимых понятий. Формализация свойств функций отнесена к старшим классам. Здесь же важно, чтобы учащиеся правильно употребляли новые термины, понимали, как указанные свойства отражаются на графике, и умели по графику отвечать на вопросы, касающиеся свойств функций.

Заметим, что усвоение свойств функций и, как следствие, выполнение заданий на установление свойств функции по ее графику, традиционно вызывает трудности у учащихся. Наиболее часто ученики путают промежутки возрастания или убывания с промежутками, на которых функция принимает положительные или отрицательные значения. Параболу, ветви которой направлены вверх (вниз), многие считают графиком возрастающей (убывающей) функции. Для предупреждения подобных ошибок необходимо, чтобы свойства функций воспринимались учащимися осмысленно, а не формально. Этому может помочь обращение к содержательным графикам, например, к графику температуры. Учащимся стоит разъяснить, что как по графику температуры легко выяснить нужную информацию, так и график любой функции наглядно отражает все её свойства. Тот большой опыт работы с графиками реальных зависимостей, который приобрели учащиеся к данному моменту, поможет им перекинуть мостик от содержательных задач, связанных с графиками, к графикам произвольных функций.

Система упражнений.

Здесь содержаться упражнения, в которых по графику функции необходимо ответить на вопросы, касающиеся свойств функции, на сопоставление графиков и функциональных зависимостей; упражнения, в которых по известным свойствам функции необходимо задать формулу этой функции; упражнения на нахождение нулей функции (в ходе выполнения которых естественным образом повторяется материал, связанный с решением уравнений - линейных, квадратных, уравнений высших степеней, уравнений, решаемых на основе равенства нулю произведения). Кроме того, есть упражнения на построение графиков функций по известным её нулям (при решении таких упражнений повторяются графики зависимостей, изучавшихся в 7 классе).

Комментарии к некоторым упражнениям:

№ 740. На рисунке 6 изображён график функции , областью определения которой является отрезок [-2; 2]. Используя график, ответьте на вопросы:

1) Есть ли у функции наибольшее или наименьшее значение, и если есть, то чему оно равно? При каком значении аргумента функция принимает это значение?

2) Укажите нули функции.

3) Укажите промежутки, на которых функция принимает положительные значения; отрицательные значения.

Укажите промежутки, на которых функция возрастает; убывает. Рис. 6

№ 741. На рисунке 7 изображены графики функций, определённых на множестве всех чисел. Какие свойства каждой из функций можно выяснить с помощью её графика?

Рис. 7

Учащиеся могут ошибочно подумать, что функция, график которой изображен на рис. 7 а), имеет наибольшее и наименьшее значения. В этом случае можно предложить им найти по графику какое-нибудь значение функции, большее 4 и меньшее -2. В отличие от функции на рис. 7 а), функция, график которой изображен на рис. 7 б), имеет наименьшее значение, оно равно -3.

Страницы: 1, 2, 3, 4, 5, 6, 7



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать