Термобарогеохимия в изучении кристаллических пород

Термобарогеохимия в изучении кристаллических пород

Аннотация

В работе рассматривается проблематика исследования газово-жидких включений в минералах горных пород различного эндогенного генезиса. Предложены методы и режимы термобарогеохимического анализа включений, в результате чего была получена информация о температуре, давлении и составе магматического расплава и флюидов. Кратко предложена техника динамических экспериментов и анализов этих микрообъектов минеральной природы. В результате изучения обобщенных данных были получены следующие результаты:

1) Был приведен и оценен весь комплекс имеющихся знаний и методов в области исследования.

2) Приведены исследования проводимые в ИГМ СО РАН по проблематике термобарогеохимии.

3) Приводится пример уточнения генезиса месторождения путем термобарогеохимических исследований на примере золоторудного месторождения «Советское»

Abstract

Problem of the study gas-fluid inclusions is considered in work in mineral of the mountain sort's different endogenic genesis. The offered methods and modes thermobarogeochemistry analysis of the inclusions with the result that is received information on the temperature, pressure and composition magmatic melt and fluids. Is it briefly offered technology dynamic experiment and analysis these microobjects mineral nature. As a result of studies generalised data were received following results:

1) Was brought and evaluated whole complex of the available knowledge's and methods in the field of studies.

2) Is Brought studies conducted in IGM Siberian Branch to Academies of the Sciences on problem of thermobarogeochemistry.

3) An example of refinement of the genesis of the deposit by termobarogeochemistry study on the example of gold mining "Sovietskoe"

1. Введение

Материал для курсовой реферативной работы подобран на основе использования литературы научной библиотеки Новосибирского Государственного Университета, литературы библиотеки Института Геологии и Минералогии СО РАН. В основе работы лежат результаты исследований, проводимы в ИГМ СО РАН в течение 30 лет.

Термобарогеохимия - наука, возникшая на стыке геохимии и динамики глубинных минералообразующих процессов. Своей целью ставит изучение различных вакуолей в минералах, заполненных микропорциями первичных растворов и расплавов, называемых газово-жидкими и затвердевшими включениями. Научное значение термобарогеохимии по включениям состоит в выявлении взаимодействия геохимической и геологической среды, минералогической термобарометрии, агрегатных состояний, геохимии минералообразующих растворов, а кроме того, в рассмотрении вопросов металлогении руд и петрологических аспектов кристаллических пород.

Прикладное значение представлено новыми термобарогеохимическими методами поисков эндогенных рудных тел, оценкой качества металлургического и строительного минерального сырья и исходными данными для получения редких кристаллов и аморфных веществ.

В работе приводится информация о чертах и свойствах объектов изучения в свете динамики глубинных процессов и явлений минералообразования касающихся магматического, метаморфических и гидротермальных процессов, так и о методиках проведения термобарогеохимических исследований. Характеризуются условия образования кристаллизации магматических и метаморфических пород в термобарогеохимических параметрах, установленных по включениям в минералах. В частности приводятся смоделированные баротермические условия образования импактитов Земли и Луны. Устанавливается связь с другими науками. Анализируется комплекс методов термобарогеохимии, проводимый в ИГМ СО РАН.

В результате написания работы автор приобрел теоретические знания по проблематике восстановления баротермической обстановки путем изучения рядов, классов и видов газово-жидких включений (далее ГЖВ), ознакомился с методикой проведения научно-исследовательских работ, в частности изучения термобарогеохимии метаморфических пород: мигматитов, анатектитов, пород амфиболитовой и гранулитовой фаций. Была рассмотрена и приведена в работе история развития термобарогеохимии как науки. В процессе написания работы автором были освоены приемы обобщения и краткого изложения научных знаний.

2. Исторический обзор

Название «термобарогеохимия» было предложено Н. П. Ермаковым на I международном симпозиуме по включениям растворов и расплавов в Праге и утверждено в 1970 г. На II Международном совещании Комиссии по рудообразующим флюидам во включениях (Токио 1971 г.).

Термобарогеохимия сформировалась впервые как важная научная отрасль в СССР. В дальнейшем она получила широкое применение в теории рудообразования и в практике поисково-разведочных работ.

В XIX веке дискуссии о возможном значении газово-жидких включений, обусловленные многочисленными заблуждениями и очень слабой техникой термометрических экспериментов (водные или парафиновые ванночки) Д. Брюстера и Г. Дэви, привели к почти полной утрате интереса к этим очень распространенным и генетически информативным микроконсервантам в минералах пород и руд. Наработки Г. Сорби в исследовании включений методом гомогенизации не были оценены современниками и не обеспечили перелома в понимании их значения

Метод криометрии был пирименен впервые итальянким ученым Г. Специа в 1907 г.

В СССР первые термодинамические исследования газово-жидких включений в природных минералах относятся к началу 40-х годов. Под руководством В.И. Вернадского, А.Е. Ферсмана, И.Ф. Григорьева, В. М. Крейтера в 1941 г. В СССР был сконструирован микроскоп, оснащенный термокамерой и обладающий новым конвективным типом передачи тепла к препарату в замкнутом объеме воздушной среды термокамеры.

С помощью этого прибора появилась возможность нагревать газово-жидкие включения до 450° и выше, что обеспечило выявление двух разных типов гомогенизации, характерных для гидротермального и пневматолитового минералообразования. В 1949 г. Н.П. Ермаковым была опубликована книга «Критерии познания генезиса минералов и среда рудообразования». В издании публиковались направления зарождающейся новой отрасли знаний. Так были квалифицированы по составу и состоянию заполнения вакуолей, по относительному времени и способу консервации в них растворов и расплавов включения минералообразующих сред.

Начало 50-х годов характеризовалось дисскусиями по экспериментам. Сомнениям подвергались высокие надкритические (более 374° С) значения температур гомогенизации включений в гидротермальных минералах и их различия для разных зон роста кристаллов.

Но в спорах рождается истина! С 1951 г. Наблюдается бурное развитие термобарогеохимии. Расширялось понимание ее значения для науки и практики, а также признание в научных кругах. Кандидатские диссертации по проблематике термобарогеохимии защитили В.Ф. Лесняк Е.И. Вульчин, М.О. Клия, Ю.А. Долгов, Л.И. Колтун, Р.Ф. Сухорский, А.И. Захарченко, В.А. Калюжный, П.В. Клевцов. Е.М. Лазько - защитил диссертацию на соискание ученой степени доктора геолого-минералогических наук с широким использованием включений для генетических выводов.

В 50-х годах разрабатывались новые техники разносторонних исследований, установление на отдельно взятых месторождениях палеотемпературных стадий и зональности проявления эндогенного рудообразования. Развивались декрепитационные испытания и аналитические методы изучения состава и концентраций растворов во включениях.

Следует отметить, что в это время зародилось и стало активно применяться практическое использование включений в природных кварцах при организации гидротермального выращивания горного хрусталя в лабораторных и промышленных условиях, а также воспроизведение газово-жидких включений в искусственных кристаллах. Это рассеяло многие сомнения в минералогической термометрии и при определении химического состава. В 60- е 70-е годы нарастал поток информации по термобарогеохимическим исследованиям. Итоги и решения проводившихся тогда республиканских и Всесоюзных совещаний публиковались или в сборниках трудов или в периодических изданиях.

Лабораторная база в 60-е годы составила 80 лабораторий и лабораторных ячеек, однако, новейшее по тем временам оборудование имелось только в восьми из них.

В 80-е годы наметились недостатки в развитии термобарогеохимии в СССР. Они были как объективными так и субъективными.

К первым относилось отсутствие унифицированного оборудования лабораторий и лабораторных ячеек, предназначенного для гомогенизации и криометрии включений. Также не были стандартизированы методы исследования состава содержимого включений как жидкостей так и газовых фаз.

Недостатки субъективного характера связаны с отклонениями от установленных исследовательских норм и подходов к исследованиям включений, что приводило порой к серьезным ошибкам при интерпретировании физико-химических условий образования того или иного минерала или горной породы.

Резкое ослабление финансирования термобарогеохимических исследований в 90-е годы привело к упадку в этой очень перспективной отрасли геологической науки. В последнее десятилетие благодаря новейшим методикам исследований, таким как например, масс-спектроскопия с лазерной абляцией, термобарогеохимия продолжила свое развитие.

3. Современные знания в области термобарогеохимии

3.1. Понятие о включениях

Под включением обычно понимают участок кристалла, вещественно не входящий в его закономерную структуру, герметически изолированный в процессе роста минерала-хозяина и имеющий с ним фазовую границу (газово-жидкие включения).

Мир микровключений предоставил геологии широкие возможности развития и новых открытий, обеспечив принципиально новыми источниками информации.

Все минералы в процессе кристаллизации консервировали микрокапли материнской среды, из которой происходил их рост. Этой средой являлись или расплавы или минералообразующие газовые и водно-жидкие растворы.

Средние размеры включений любой среды, использующиеся для исследований, варьируют в пределах 0,01 - 0,1 мм. Чем крупнее их величина, тем легче они поддаются изучению под микроскопом, а также экспериментальным и аналитическим исследованиям. Включения более 1 мм в поперечнике встречаются очень редко, а уникальные по размерам вакуоли, заполненные растворами имеют объем 0,5 - 1 см3. Минимальные размеры вакуолей включений, установленные под электронным микроскопом, составляют 2*10-5 мм. Форма их вакуолей крайне разнообразна: от объемных субизометрических, негативно-ограненных или полуограненных, до шарообразных и трубообразных. Она зависит в большей мере от структуры включающего кристалла и от механизма образования самой вакуоли. Очень часто в залеченных микротрещинах встречаются уплощенно-округлые или неправильные до амебовидных включения, форма которых не подчинена кристаллографическим закономерностям образования минералов.

Количество газово-жидких включений в минералах земной коры столь велико, что вода заключенная в них по объему соизмерима с водой Мирового Океана, а углекислота, плененная во включениях превышает ее содержание в атмосфере. В некоторых образцах гидротермальных минералов их суммарный объем превышает по отношению к минералу-хозяину варьирует от 1 до 5 об. %. Оценочно количество включений в жильных минералах белого цвета (кварц, кальцит) может достигать от 1015 до 109 шт на 1 см3 и зависит от скорости кристаллизации.

В многообразии микровключений выделяютя три разные категории этих образований:

1) Включения минералообразующих сред в виде сингенетических и субсингенетических микросистем растворов и расплавов, материнских для каждого включаещего минерала.

2) Включения окружающих сред, не поставляющих или практически не поставляющих минералообразующих веществ для образования кристаллов или их агрегатов.

3) Твердые включения, захваченные минералами при росте из геохимической среды, в которой они находились или кристаллизовались синхронно с ними.

Термобарогеохимия для точного генетического познания минеральной природы и научно-практических целей широко использует первую категорию включений, так как именно эти включения в течение миллионов и миллиардов лет сохраняют всю основную «наследственную» информацию о происхождении минералов, руд и пород. Изучение этих включений, хранителей «генетической памяти минералов» рассматривается ниже.

Включения окружающей среды консервируются в минеральных образованиях различного генезиса. Так, например, в минералах возгона, образующихся при поствулканической фумарольной деятельности встречаются воздушно-эксгаляционные (смешанные) включения газов. В газе консервируются воздушные включения тропосферы Земли. Включения окружающей среды имеют значение не столько для выявления процессов и явлений минералоообразования, сколько для выяснения состояния окружающей среды, их проявления и развития.

Твердые включения - это включения неминералообразующих сред. В отличие от затвердевших включений расплавов, относящихся к первой категории они, захватывались минералами уже в твердом состоянии, магматические аксцессории, например. Минеральный состав таких аксцессорных включений, выделившихся из расплавов до включающих макроминералов в виде мельчайших зерен, микролитов, иголочек и тончайшей пыли, в известной мере указывает на элементный состав первоначальной магмы и в некоторой степени служит целям выявления ее металлогенической специализации.

Научно-познавательное значение включений неминералообразующих сред связано с выявлением «внутренних» парагенезисов минералов и интерпретацией спектральных и химических анализов мономинеральных фракций.

3.1.1 Информационные ряды и категории включений

Термобарогеохимия с самого начала своего развития использовала для широких генетических выводов микровключения материнских растворов и расплавов, которые приводятся в таблице.

Таблица 1.

Ряд

Основания для выделения

Классы геохимических систем включения

I

Агрегатное состояние и генетические показания содержимого вакуолей

1 Затвердевшие (расплавные - магматические)

2 Газовые (пневматолитовые)

3 Водно-жидкие (гидротермальные до холодноводных)

II

Относительное время и способ образования

4 Первичные (сингенетические)

5 Мнимовторичные (субсингенетические)

6 Вторичные (эпигенетические)

III

Степень гомогенности и информативности совокупности включений

7 Изначально гомогенные высоко информативные микропорции минералообра-

зующих сред

8 Сопутствующие постгомогенные жидкости или газовые части гетерогенезированных минералообразующих сред

9 Агомогенные и аномальные включения растворов и расплавов, претерпевшие аномализацию

По составу и агрегатному состоянию выделяется первый ряд главных классов включений: затвердевших (расплавно-магматических), газовых, характерных для проявлений пневматолиза и водно-жидких (обычно углекисло-водных), насыщающих гидротермальные минералы рудных месторождений.

Второй генетический ряд оказался необходимым для привязки получаемых результатов к относительному времени действия и механизму образования геохимических микросистем, законсервированных в минералах.

Развитие термобарогеохимии в применении к макро и микроприродным объектам магматического происхождения, потребовало для расшифровки некоторых процессов и явлений третьего информативного ряда с выделением в нем гомогенных, сопутствующих и агомогенных (аномальных) включений.

Так в гранитоидных интрузивах разного состава кроме уплотненных газов и общераспространенных затвердевших включений отмечались включения силикатно-водных консервантов, водно-солевых и безводных силикатных жидкостей (расплавов-растворов) с высокими температурами гомогенизации. Их нельзя было истолковать как вторичные образования для каждой данной магматической породы. Также они не отражают процесс ликвации в родоначальной магме, а фиксируют эволюционное развитие процесса кристаллизационной дифференциации в завершающие стадии становления интрузивов. Такие включения получили название сопутствующих включений. Сопутствующие постгомогенные включения предоставляют исследователям значительно более весомый материал для познания эволюции и флуктуаций в минералообразующих средах и определения основных термодинамических параметров завершающей стадии интрузивного процесса, когда фазы расплавов находятся в устойчивом подвижном равновесии друг с другом.

Аномальные включения совсем не пригодны для определения температур и агрегатных состояний растворов. Они по своему химическому составу могут быть расплавно-магматическими, газовыми и жидкими, а по относительному времени возникновения первичными, мнимовторичными и вторичными. Могут возникать синхронно с минералообразованием в результате консервации капелек магмы, уже содержащих твердые микрофазы в виде минералов предшественников, ассимилированных ими. Обычно наблюдаются в виде акцессорных минералов в породах и рудных жилах. Субсинхронно аномальные включения образуются в результате перенаполнения полостей включений по возрожденным микротрещинам. Постгенетически они возникают в результате полного или частичного разрушения вакуолей, часто с образованием ореола «дочерних» включений с резко нарушенными соотношениями фаз.

3.1.2 Агрегатные состояния, состав и генетические показания содержимого вакуолей

Твердые фазы минералов-узников наиболее характерно для образований магматического происхождения - затвердевших и остаточно-магматических кристаллофлюидных включений. Жидкие фазы доминируют в вакуолях гидротермальных минералов и представлены высоко- или слабоконцентрированными источниками, иногда коллоидными растворами. Такие растворы, очень разнообразны по плотности, насыщены солями и газами, главным образом углекислотой, сероводородом.

Газовые включения могут быть высокоразреженными или, наоборот, конденсированными почти до степени флюидной жидкости. Они являются водными или безводными газовыми смесями, а иногда представляют собой аэрозоли.

При подразделении включений на главные классы и типы в первую очередь учитывается фазовый состав их заполнения при обычной температуре. На этом основании выделяются 9 типов включений минералообразующих сред. Включения в аморфном вулканическом стекле рассматривать не будем.

Магматические раскристаллизованные плутонические включения.

Представлены кристаллически-зернистым заполнением вакуолей с газовыми обособлениями неправильной формы. Наиболее характерны для минералов интрузивных пород и магматических рудных залежей.

Пневматолитовые включения газовых смесей.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать