Физическая география
собенно богаты осадками Средняя Америка, бассейн Амазонки, берега Гвинейского залива, острова Индонезии. На некоторых станциях Средней Америки выпадает до 5000--6500 мм в год, в Колумбии -- до 7000 мм и более, в Западной Африке -- до 4000--5000 мм, а в Дебундже, на юго-западном склоне пика Камерун, -- даже свыше 9000 мм. До 7000 мм осадков выпадает и на некоторых станциях Индонезии.

Очень большие суммы осадков отмечаются на тропических островах там, где имеются благоприятные орографические условия, т. е. где поток пассата поднимается по горным склонам. На Гавайских островах есть горные станции, где осадков выпадает свыше 9000 мм в год и даже свыше 12 000 мм. Последнее число, впрочем, сомнительно.

От субтропиков к умеренным широтам осадки вообще увеличиваются. В умеренных широтах хорошо развита циклоническая деятельность, облачность достаточно велика, облака обладают значительной мощностью и часто достигают уровня оледенения. В степной зоне, где порядок величин годовых сумм осадков 300--500 мм, осадков все-таки выпадает меньше, чем может испаряться. Мы уже говорили, что здесь бывают засушливые годы, когда осадков недостаточно для нормального развития сельскохозяйственных культур. Это зона неустойчивого увлажнения.

В лесной зоне годовые суммы осадков составляют уже 500-- 1000 мм. Испарение здесь в общем меньше осадков; это зона избыточного увлажнения. Избыток осадков удаляется здесь путем речного стока. При этом осадки на материках убывают в направлении с запада на восток, по мере удаления от океана, с которого происходит основной перенос влаги на материк западными ветрами. Так, в большей части Европы выпадает от 500 до 1000 мм осадков и более, тогда как в Восточной Сибири с ее зимним режимом высокого давления -- менее 500 мм, а в некоторых районах -- даже менее 250 мм. Однако там, где в восточных частях материков существует муссонная циркуляция, осадки снова увеличиваются за счет обильных летних дождей. Так, например, годовая сумма осадков в Иркутске 440 мм, в Минусинске 310 мм, но во Владивостоке уже 570 мм. В Петропавловске-Камчатском, где осадки значительны и зимой, их выпадает свыше 1000 мм.

Очевидно влияние горных хребтов на осадки в умеренных широтах. На наветренных склонах в горах как фронтальные, так и конвективные осадки вообще возрастают вследствие усиления вертикальных движений при вынужденном восхождении воздуха по склонам.

На подветренных склонах, напротив, осадки убывают. На Атлантическом побережье Норвегии, в Бергене, наблюдается 1730 мм осадков в год, тогда как в Осло, за хребтом, -- только 560 мм. Резкий контраст в осадках существует между Тихоокеанским побережьем Северной Америки и материком к востоку от Скалистых гор. Резко увеличены осадки на западных берегах в сравнении с восточными на юге Южной Америки и в Новой Зеландии, что также объясняется орографией. Даже такие невысокие горы, как Урал, оказывают значительное влияние на распределение осадков: в Уфе выпадает за год в среднем 600 мм, а в Челябинске 370 мм.

От умеренных широт к высоким осадки снова убывают вследствие уменьшения влагосодержания атмосферы, а с ним и водности облаков, а в Антарктике также вследствие малой облачности над материком. В зоне тундры выпадает в общем менее 300 мм в год, а в восточносибирской тундре -- даже менее 200 мм в год, несмотря на большое число дней с осадками. Однако тундра является зоной избыточного увлажнения, так как испарение там еще меньше, чем осадки. Еще меньше осадки в Арктическом бассейне.

В южном полушарии осадки убывают примерно от 1000 мм на 40-й параллели до 250 мм на полярном круге. В глубине материка Антарктиды осадки измеряются десятками миллиметров в год.

33. Характеристики увлажнения

Количество выпадающих осадков само по себе еще не определяет условий увлажнения почвы. Примерно одинаковые суммы осадков выпадают и в полупустыне Прикаспийской низменности, и в тундре. Но в первом случае недостаток увлажнения приводит к типичной ксерофильной растительности, а во втором случае создается избыточное увлажнение и заболачивание.

Стало быть, для оценки условий увлажнения нужно учитывать не только выпадающие осадки, но и возможность их испарения.

Мы знаем, что испаряемостью называют величину испарения, возможную в данной местности при неограниченном запасе влаги. Она зависит от всего комплекса климатических условий, местности, в первую очередь от температурных условий. Естественно характеризовать условия увлажнения за год, за месяц или за сезон отношением суммы осадков г к испаряемости E за тот же период. Такое отношение называют коэффициентом увлажнения.

Он показывает, в какой доле выпадающие осадки в состоянии возместить потерю влаги. Если осадки больше испаряемости, то запас влаги в почве увеличивается и можно говорить об избыточном увлажнении. Если осадки меньше испаряемости, увлажнение недостаточное и почва теряет влагу.

По H. H. Иванову, при коэффициенте увлажнения k во все месяцы года не менее 100% местность имеет постоянно влажный климат, при k меньше 100% в течение части месяцев -- непостоянно влажный климат, при k между 25 и 100% во все месяцы -- постоянно умеренно влажный климат, при k меньше 25% в части месяцев -- непостоянно засушливый климат к при k меньше 25% во все месяцы -- постоянно засушливый климат. Возможно также, что часть месяцев будет относиться к влажным, а другая часть -- к засушливым. Тогда получим засушливо-влажный или влажно-засушливый климат, смотря по тому, будет ли влажный период продолжительнее или короче засушливого.

Степень засушливости климата вместе с его температурными условиями определяет тип растительности и всего географического ландшафта в данной местности.

M. И. Будыко показал, что на годовую испаряемость в данном месте должно затрачиваться количество тепла, равное годовому радиационному балансу избыточно увлажненной подстилающей поверхности в этом месте. При этом предполагается, что в сумме за год обмен теплом между почвой и воздухом путем теплопроводности так мал, что им можно пренебречь. Отсюда радиационный индекс сухости К для целого года можно написать так.

35. Карты барической топографии

Пространственное распределение атмосферного давления непрерывно меняется с течением времени. Это значит, что непрерывно меняется расположение изобарических поверхностей в атмосфере. Чтобы следить за изменениями барического, а также и термического поля, в практике службы погоды ежедневно составляют по аэрологическим наблюдениям карты топографии изобарических поверхностей -- карты барической топографии.

На карту абсолютной барической топографии наносят высоты определенной изобарической поверхности над уровнем моря на разных станциях в определенный момент времени, например поверхности 500 мб в 6 часов утра 1 января 1967 г. Точки с равными высотами соединяют линиями равных высот -- изогипсами (абсолютными изогипсами). По изогипсам можно судить о распределении давления в тех слоях атмосферы, в которых располагается данная изобарическая поверхность.

В атмосфере всегда существуют области, в которых давление повышено или понижено по сравнению с окружающими областями. Фактически вся атмосфера состоит из таких областей повышенного или пониженного давления, расположение которых все время меняется. При этом в областях пониженного давления -- циклонах или депрессиях -- давление на каждом уровне самое низкое в центре области, а к периферии растет. Давление, кроме того, всегда понижается с высотой; поэтому изобарические поверхности в циклоне прогнуты в виде воронок, снижаясь от периферии к центру. Следовательно, на карте абсолютной топографии в центре циклона будут находиться изогипсы с меньшими значениями высоты, а на периферии -- изогипсы с большими значениями. В области повышенного давления -- антициклоне, напротив, на каждом уровне в центре будет наивысшее давление; поэтому изобарические поверхности в антициклоне будут иметь форму куполов, и на карте абсолютной барической топографии в центре антициклона мы найдем изогипсы с наивысшими значениями.Составляют еще карты относительной барической топографии. На такую карту наносят высоты определенной изобарической поверхности, но отсчитанные не от уровня моря (как на картах абсолютной барической топографии), а от другой, лежащей ниже изобарической поверхности.

Такие высоты называются относительными, а проведенные по ним изогипсы -- относительными изогипсами. Относительная высота одной изобарической поверхности над другой зависит от средней температуры воздуха между этими двумя поверхностями (рис. 56). Из главы второй известно, что барическая ступень зависит от температуры. Но барическая ступень, т. е. расстояние между двумя уровнями с давлением, различающимся на единицу, в сущности и есть относительная высота одной изобарической поверхности над другой.

В областях тепла толщина атмосферного слоя между двумя поверхностями увеличена, в областях холода -- уменьшена.

Чем больше относительная высота, тем выше температура слоя. Следовательно, карты относительной топографии показывают распределение температуры в атмосфере . Иногда говорят, что карты абсолютной и относительной топографии вместе представляют термобарическое поле атмосферы. Составляют карты барической топографии и по осредненным данным за промежутки времени от нескольких дней до месяца. Для климатологических целей применяются карты барической топографии, составленные по многолетним средним данным.

На карты барической топографии, строго говоря, наносят не высоты изобарических поверхностей, а их геопотенциалы. Геопотенциалом (абсолютным) называется потенциальная энергия единицы массы в поле силы тяжести. Иначе говоря, геопотенциал изобарической поверхности в каждой ее точке есть работа, которую нужно затратить против силы тяжести, чтобы поднять единицу массы от уровня моря в данную точку.

Относительный геопотенциал соответственно равен разности абсолютных геопотенциалов двух точек, лежащих на одной вертикали.

Изобары

Карты абсолютной барической топографии для нескольких изобарических поверхностей в своей совокупности наглядно представляют барическое поле атмосферы в тех слоях, в которых располагаются эти изобарические поверхности. Но, кроме того, с давних пор принято изображать барическое поле на уровне моря с помощью линий равного давления -- изобар. Для этого наносят на географическую карту величины атмосферного давления, измеренные в один и тот же момент на уровне моря или приведенные к этому уровню, соединяют точки с одинаковым давлением изобарами. Каждая изобара является следом пересечения какой-то изобарической поверхности с уровнем моря.

Изобары можно построить не только для уровня моря, но и для любого вышележащего уровня. Однако в службе погоды составляют для свободной атмосферы не карты изобар, а описанные выше карты барической топографии.

На карте изобар также обнаруживаются уже упоминавшиеся области пониженного и повышенного давления -- циклоны и антициклоны. В циклоне самое низкое (минимальное) давление наблюдается в центре; напротив, в антициклоне в центре наблюдается самое высокое давление. На картах изобар для уровня моря, как и на картах барической топографии, обнаруживается постоянное перемещение этих областей и изменение их интенсивности, а следовательно, и постоянные изменения барического поля. В практике службы погоды не применяются отдельные карты изобар. Составляют комплексные синоптические карты, на которые, кроме давления на уровне моря, наносят и другие метеорологические элементы по наземным наблюдениям. На этих картах и проводят изобары.

В климатологии применяются карты изобар для уровня моря, составленные по многолетним средним данным.

Барические системы

Области пониженного и повышенного давления, на которые постоянно расчленяется барическое поле атмосферы, называют барическими системами. Барические системы основных типов -- циклон и антициклон -- на приземных синоптических картах обрисовываются замкнутыми концентрическими изобарами неправильной, в общем округлой или овальной формы.

При этом в центре циклона давление ниже, чем на периферии, а в центре антициклона давление выше, чем на периферии. Изобарические поверхности в циклоне прогнуты вниз в виде воронок, а в антициклоне выгнуты вверх в виде куполов. Горизонтальные барические градиенты в циклоне направлены от периферии к центру, а в антициклоне -- от центра к периферии. Размеры циклонов и антициклонов очень велики; их поперечники измеряются тысячами километров (в так называемых тропических циклонах -- сотнями километров).

Кроме описанных барических систем с замкнутыми изобарами, различают еще барические системы с незамкнутыми изобарами. К ним относятся ложбина (пониженного давления) и гребень (повышенного давления).

Ложбина -- это полоса пониженного давления между двумя областями повышенного давления. Изобары в ней либо близки к параллельным прямым, либо имеют вид латинской буквы V (в последнем случае ложбина является вытянутой периферийной частью циклона). Изобарические поверхности в ложбине напоминают желоба с ребром, обращенным вниз. Центра в ложбине нет, но есть ось, т. е. линия, на которой давление имеет минимальное значение или (если изобары имеют вид буквы V) на которой изобары резко меняют направление. На каждом уровне ось совпадает с ребром изобарического желоба. Барические градиенты в ложбине направлены от периферии к оси.

Гребень представляет собой полосу повышенного давления между двумя областями пониженного давления. Изобары в гребне либо напоминают параллельные прямые, либо имеют форму латинской буквы U. В последнем случае гребень является периферийной частью антициклона, характеризующейся выпучиванием изобар. Изобарические поверхности в гребне имеют вид желобов, обращенных выпуклостью вверх. Гребень имеет ось, на которой давление максимальное или на которой изобары сравнительно резко меняют направление. Барические градиенты в гребне направлены от оси к периферии.

Различают еще седловину -- участок барического поля между двумя циклонами (или ложбинами) и двумя антициклонами (или гребнями), расположенными крест-накрест. Изобарические поверхности в седловине имеют характерную форму седла: они поднимаются в направлении к антициклонам и опускаются в направлении к циклонам. Точка в центре седловины называется точкой седловины.

36. Горизонтальный барический градиент

Рассматривая изобары на синоптической карте, мы замечаем, что в одних местах изобары проходят гуще, в других -- реже.

Очевидно, что в первых местах атмосферное давление меняется в горизонтальном направлении сильнее, во-вторых -- слабее. Говорят еще: «быстрее» и «медленнее», но не следует смешивать изменения в пространстве, о которых идет речь, с изменениями во времени.

Точно выразить, как меняется атмосферное давление в горизонтальном направлении, можно с помощью так называемого горизонтального барического градиента, или горизонтального градиента давления. В главе четвертой говорилось о горизонтальном градиенте температуры. Подобно этому горизонтальным градиентом давления называют изменение давления на единицу расстояния в горизонтальной плоскости (точнее, на поверхности уровня); при этом расстояние берется по тому направлению, в котором давление убывает всего сильнее. А таким направлением наиболее сильного изменения давления является в каждой точке направление по нормали к изобаре в этой точке.

Таким образом, горизонтальный барический градиент есть вектор, направление которого совпадает с направлением нормали к изобаре в сторону уменьшения давления, а числовое значение равно производной от давления по этому направлению. Обозначим этот вектор символом -- р, а числовую его величину -dp/dn, где п -- направление нормали к изобаре.

Как всякий вектор, горизонтальный барический градиент можно графически представить стрелкой; в данном случае стрелкой, направленной по нормали к изобаре в сторону убывания давления. При этом длина стрелки должна быть пропорциональна числовой величине градиента.

В разных точках барического поля направление и величина барического градиента будут, конечно, разными. Там, где изобары сгущены, изменение давления на единицу расстояния по нормали к изобаре больше; там, где изобары раздвинуты, оно меньше. Иначе говоря, величина горизонтального барического градиента обратно пропорциональна расстоянию между изобарами.

Если в атмосфере есть горизонтальный барический градиент, это означает, что изобарические поверхности в данном участке атмосферы наклонены к поверхности уровня и, стало быть, пересекаются с нею, образуя изобары. Изобарические поверхности наклонены всегда в направлении градиента, т. е. туда, куда давление убывает.

Горизонтальный барический градиент является горизонтальной составляющей полного барического градиента. Последний представляется пространственным вектором, который в каждой точке изобарической поверхности направлен по нормали к этой поверхности в сторону поверхности с меньшим значением давления. Числовая величина этого вектора равна -dp/dn; но здесь n -- направление нормали к изобарической поверхности. Полный барический градиент можно разложить на вертикальную и горизонтальную составляющие, или на вертикальный и горизонтальный градиенты. Можно разложить его и на три составляющие по осям прямоугольных координат X, Y, Z. Давление меняется с высотой гораздо сильнее, чем в горизонтальном направлении. Поэтому вертикальный барический градиент в десятки тысяч раз больше горизонтального. Он уравновешивается или почти уравновешивается направленной противоположно ему силой тяжести, как это вытекает из основного уравнения статики атмосферы. На горизонтальное движение воздуха вертикальный барический градиент не влияет. Дальше в этой главе мы будем говорить только о горизонтальном барическом градиенте, называя его просто барическим градиентом.

38. Скорость ветра

Как нам уже известно из главы второй, ветром называют движение воздуха относительно земной поверхности, причем, как правило, имеется в виду горизонтальная составляющая этого движения. Однако иногда говорят о восходящем или о нисходящем ветре, учитывая также и вертикальную составляющую. Ветер характеризуется вектором скорости. На практике под скоростью ветра подразумевается только числовая величина скорости; именно ее мы будем в дальнейшем называть скоростью ветра, а направление вектора скорости -- направлением ветра.

Скорость ветра выражается в метрах в секунду, в километрах в час (в особенности при обслуживании авиации) и в узлах (в морских милях в час). Чтобы перевести скорость из метров в секунду в узлы, достаточно умножить число метров в секунду на 2.

Существует еще оценка скорости (или, как принято говорить в этом случае, силы) ветра в баллах, так называемая шкала Бофорта, по которой весь интервал возможных скоростей ветра делится на 12 градаций. Эта шкала связывает силу ветра с различными его эффектами, такими, как степень волнения на море, качание ветвей и деревьев, распространение дыма из труб и т. п. Каждая градация по шкале Бофорта носит определенное название. Так, нулю шкалы Бофорта соответствует штиль, т. е. полное отсутствие ветра. Ветер в 4 балла, по Бофорту называется умеренным и соответствует скорости 5--7 м/сек; в 7 баллов -- сильным, со скоростью 12--15 м/сек; в 9 баллов -- штормом, со скоростью 18--21 м/сек; наконец, ветер в 12 баллов по Бофорту-- это уже ураган, со скоростью свыше 29 м/сек.

Различают сглаженную скорость ветра за некоторый небольшой промежуток времени, в течение которого производятся наблюдения, и мгновенную скорость ветра, которая вообще сильно колеблется и временами может быть значительно ниже или выше сглаженной скорости. Анемометры обычно дают значения сглаженной скорости ветра, и в дальнейшем речь будет идти именно о ней.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать