Атмосфера состоит из смеси газов, называемой воздухом, в которой находятся во взвешенном состоянии жидкие и твердые частички. Общая масса последних незначительна в сравнении со всей массой атмосферы. Атмосферный воздух у земной поверхности, как правило, является влажным. Это значит, что в его состав, вместе с другими газами, входит водяной пар, т.е. вода в газообразном состоянии. Содержание водяного пара в воздухе меняется в значительных пределах, в отличие от других составных частей воздуха: у земной поверхности оно колеблется между сотыми долями процента и несколькими процентами. Это объясняется тем, что при существующих в атмосфере условиях водяной пар может переходить в жидкое и твердое состояние и, наоборот, может поступать в атмосферу заново вследствие испарения с земной поверхности. Воздух без водяного пара называют сухим воздухом. У земной поверхности сухой воздух на 99% состоит из азота (78% по объему или 76% по массе) и кислорода (21% по объему или 23% по массе). Оба эти газа входят в состав воздуха у земной поверхности в виде двухатомных молекул (N2 и О2).Оставшийся 1 % приходится почти целиком на аргон (Аr). Всего 0,08% остается на углекислый газ (СО2). Многочисленные другие газы входят в состав воздуха в тысячных, миллионных и еще меньших долях процента. Это криптон, ксенон, неон, гелий, водород, озон, йод, радон, метан, аммиак, перекись водорода, закись азота и др.Процентный состав сухого воздуха у земной поверхности очень постоянен и практически одинаков повсюду. Существенно меняться может только содержание углекислого газа. В результате процессов дыхания и горения его объемное содержание в воздухе закрытых, плохо вентилируемых помещений, а также промышленных центров может возрастать в несколько раз -- до 0,1--0,2%. Совершенно незначительно меняется процентное содержание азота и кислорода. Процентное содержание водяного пара во влажном воздухе у земной поверхности составляет в среднем от 0,2% в полярных широтах до 2,5% у экватора, а в отдельных случаях колеблется почти от нуля до 4. Часть молекул атмосферных газов и частиц атмосферного аэрозоля -- капелек, пылинок, кристаллов -- несет электрические заряды. Эти заряженные частички называются ионами.
Молекулы воздуха заряжаются вследствие потери электрона или присоединения свободного электрона. К заряженной молекуле присоединяются другие молекулы, в которых происходит путем индукции разделение зарядов. Так возникает электрически заряженный комплекс молекул, называемый легким ионом. Заряженные молекулы могут также присоединяться к ядрам конденсации или пылинкам, взвешенным в воздухе, вследствие чего возникают более крупные тяжелые ионы с массами в тысячи раз большими, чем у легких ионов.
.Капельки и кристаллы облаков и осадков, возникая на ионах как на ядрах конденсации, присоединяя их в дальнейшем, а также, получая электрические заряды другими способами, также могут стать носителями электрических зарядов. Заряды капелек и кристаллов гораздо больше, чем заряды ионов: они могут достигать многих миллионов элементарных зарядов (зарядов электрона). Кроме того, значительная часть ионов в высоких слоях представляет собой свободные электроны. Содержание ионов здесь измеряется сотнями тысяч и миллионами на один кубический сантиметр воздуха. Так же как и незаряженные частички, ионы в атмосфере постоянно перемещаются. Именно благодаря этому атмосфера обладает электропроводностью, в нижних слоях малой, в высших -- значительной., в воздух местами могут проникать другие газы, особенно соединения, возникающие при сгорании топлива (окислы серы, углерода, фосфора и др.). Наиболее заражается такими примесями воздух больших городов и промышленных районов.В состав атмосферы входят также твердые и жидкие частички, взвешенные в атмосферном воздухе. Кроме водяных капелек и кристаллов, возникающих в атмосфере при конденсации водяного пара, это пыль почвенного и органического происхождения; твердые частички дыма, сажи, пепла и капельки кислот, попадающие в воздух при лесных пожарах, при сжигании топлива, при вулканических извержениях; частички морской соли, попадающие в воздух при разбрызгивании морской воды во время волнения (обычно, в силу своей гигроскопичности, это не твердые частички, а мельчайшие капельки насыщенного раствора соли в воде); микроорганизмы (бактерии); пыльца, споры; наконец, космическая пыль, попадающая в атмосферу (около миллиона тонн в год) из межпланетного пространства, а также возникающая при сгорании метеоров в атмосфере. Особое место среди атмосферных примесей занимают продукты искусственного радиоактивного распада, заражающие воздух при испытательных взрывах атомных и термоядерных бомб. Аэрозольные примеси к воздуху могут легко переноситься воздушными течениями на большие расстояния. Песчаная пыль, попадающая в воздух над пустынями Африки и Передней Азии, неоднократно выпадала в больших количествах на территории Южной и Средней Европы. Дым лесных пожаров в Канаде переносился сильными воздушными течениями на высотах 8-13 км через Атлантику к берегам Европы, еще сохраняя достаточную концентрацию. Дым и пепел больших вулканических извержений неоднократно распространялись в высоких слоях атмосферы на огромные расстояния, окутывая весь Земной шар
Электрическое поле атмосферы
Итак, в атмосфере всегда существуют подвижные электрические заряды, связанные с ионами, а также с элементами облаков и осадков. Заряды эти -- обоих знаков, причем преобладают положительные, так что суммарный заряд атмосферы -- положительный. При этом с высотой он растет. В результате атмосфера обладает электростатическим полем, в каждой точке которого есть то или иное значение потенциала. Это значит, что электрический заряд, помещенный в любой точке атмосферы, будет испытывать силу, действующую на него в направлении, нормальном к поверхности равного потенциала, проходящей через эту точку. Эту силу на единицу положительного электрического заряда называют напряженностью атмосферно-электрического поля. Она направлена в отсутствии облаков сверху вниз и измеряется изменением потенциала поля на единицу расстояния, т. е. в вольтах на метр (в/м).В приземном слое атмосферы напряженность поля, в среднем для всего Земного шара, около 100 в/м.. В промышленных районах с сильно загрязненным воздухом она значительно больше. В общем, перенос электричества (ток проводимости) должен происходить от положительно заряженной атмосферы к отрицательно заряженной земной поверхности. Несмотря на это, отрицательный заряд земной поверхности с течением времени не убывает. Причина состоит, по-видимому, в грозах.Напряженность поля между облаком и землей может даже изменить свое направление, т. е. получить направление вверх. В связи с указанными огромными разностями потенциалов в атмосфере возникают искровые электрические разряды, молнии, как в облаках, так и между облаками и землей. При напряженности поля, направленной вверх, молнии могут переносить к земной поверхности очень большие отрицательные заряды, которые и компенсируют потерю отрицательного заряда земной поверхностью в спокойную погоду.
6. Взаимодействие атмосферы с другими геосферами
Тропосфера
Атмосфера состоит из нескольких концентрических слоев, отличающихся один от другого по температурным и иным условиям. Нижняя часть атмосферы, до высоты 10-15 км, в которой сосредоточено 4/5 всей массы атмосферного воздуха, носит название тропосферы. Для нее характерно, что температура здесь с высотой падает в среднем на 0,6°/100 м (в отдельных случаях распределение температуры по вертикали варьирует в широких пределах). В тропосфере содержится почти весь водяной пар атмосферы и возникают почти все облака. Сильно развита здесь и турбулентность, особенно вблизи земной поверхности, а также в так называемых струйных течениях в верхней части тропосферы.
Высота, до которой простирается тропосфера, над каждым местом Земли меняется изо дня в день. Кроме того, даже в среднем она различна под разными широтами и в разные сезоны года. В среднем годовом тропосфера простирается над полюсами до высоты около 9 км, над умеренными широтами до 10--12 км и над экватором до 15--17 км. Средняя годовая температура воздуха у земной поверхности около +26° на экваторе и около --23° на северном полюсе. На верхней границе тропосферы над экватором средняя температура около --70°, над северным полюсом зимой около --65°, а летом около --45°.
Давление воздуха на верхней границе тропосферы соответственно ее высоте в 5--8 раз меньше, чем у земной поверхности. Следовательно, основная масса атмосферного воздуха находится именно в тропосфере. Процессы, происходящие в тропосфере, имеют непосредственное и решающее значение для погоды и климата у земной поверхности.
Самый нижний, тонкий слой тропосферы, в несколько метров (или десятков метров) высотой, непосредственно примыкающий к земной поверхности, носит название приземного слоя. Вследствие близости к земной поверхности физические процессы в этом слое отличаются известным своеобразием. Здесь особенно резко выражены изменения температуры в течение суток: в этом слое температура особенно сильно падает с высотой днем и часто растет с высотой ночью.
Слой от земной поверхности до высоты порядка 1000 м носит название слоя трения. В этом слое скорость ветра ослаблена в сравнении с вышележащими слоями; ослаблена тем больше, чем ближе к земной поверхности. Подробнее об этих слоях будет сказано в дальнейшем.
Стратосфера и мезосфера
Над тропосферой до высоты 50--55 км лежит стратосфера, характеризующаяся тем, что температура в ней в среднем растет с высотой. Переходный слой между тропосферой и стратосферой (толщиной 1--2 км) носит название тропопаузы.
Выше были приведены данные о температуре на верхней границе тропосферы. Эти температуры характерны и для нижней стратосферы. Таким образом, температура воздуха в нижней стратосфере над экватором всегда очень низкая; притом летом много ниже, чем над полюсом.
Нижняя стратосфера более или менее изотермична. Но, начиная с высоты около 25 км, температура в стратосфере быстро растет с высотой (рис. 7), достигая на высоте около 50 км максимальных, притом положительных значений (от +10 до +30°). Вследствие возрастания температуры с высотой турбулентность в стратосфере мала.
Водяного пара в стратосфере ничтожно мало. Однако на высотах 20--25 км наблюдаются иногда в высоких широтах очень тонкие, так называемые перламутровые облака. Днем они не видны, а ночью кажутся светящимися, так как освещаются солнцем, находящимся под горизонтом. Эти облака состоят из переохлажденных водяных капелек. Стратосфера характеризуется еще тем, что преимущественно в ней содержится атмосферный озон, о чем было сказано выше (параграф 5). С этой точки зрения она может быть названа озоносферой. Рост температуры с высотой в стратосфере объясняется именно поглощением солнечной радиации озоном.
Над стратосферой лежит слой мезосферы, примерно до 80 км. Здесь температура с высотой падает до нескольких десятков градусов ниже нуля (рис. 2.7). Вследствие быстрого падения температуры с высотой в мезосфере сильно развита турбулентность. На высотах, близких к верхней границе мезосферы (75--90 км), наблюдаются еще особого рода облака, также освещаемые солнцем в ночные часы, так называемые серебристые. Наиболее вероятно, что они состоят из ледяных кристаллов.На верхней границе мезосферы давление воздуха раз в 200 меньше, чем у земной поверхности. Таким образом, в тропосфере, стратосфере и мезосфере вместе, до высоты 80 км, заключается больше чем 99,5% всей массы атмосферы. На вышележащие слои приходится ничтожное количество воздуха. Ионосфера
Верхняя часть атмосферы, над мезосферой, характеризуется очень высокими температурами и потому носит название термосферы. В ней различаются, однако, две части: ионосфера, простирающаяся от мезосферы до высот порядка тысячи километров, и лежащая над нею внешняя часть -- экзосфера, переходящая в земную корону.
Воздух в ионосфере чрезвычайно разрежен. Мы уже указывали в параграфе 13, что на высотах 300--750 км его средняя плотность порядка 10-8--10-10 г/м3. Но и при такой малой плотности каждый кубический сантиметр воздуха на высоте 300 км еще содержит около одного миллиарда (109) молекул или атомов, а на высоте 600 км -- свыше 10 миллионов (107). Это на несколько порядков больше, чем содержание газов в межпланетном пространстве.
Ионосфера, как говорит само название, характеризуется очень сильной степенью ионизации воздуха. Как уже говорилось в параграфе 8, содержание ионов здесь во много раз больше, чем в нижележащих слоях, несмотря на сильную общую разреженность воздуха. Эти ионы представляют собой в основном заряженные атомы кислорода, заряженные молекулы окиси азота и свободные электроны. Их содержание на высотах 100-400 км -- порядка 1015--106 на кубический сантиметр.В ионосфере выделяется несколько слоев, или областей, с максимальной ионизацией, в особенности на высотах 100-- 120 км (слой Е) и 200--400 км (слой F). Но и в промежутках между этими слоями степень ионизации атмосферы остается очень высокой. Положение ионосферных слоев и концентрация ионов в них все время меняются. Спорадические скопления электронов с особенно большой концентрацией носят название электронных облаков.
От степени ионизации зависит электропроводность атмосферы. Поэтому в ионосфере электропроводность воздуха в общем в 1012 раз больше, чем у земной поверхности. Радиоволны испытывают в ионосфере поглощение, преломление и отражение. Волны длиной более 20 м вообще не могут пройти сквозь ионосферу: они отражаются уже электронными слоями небольшой концентрации в нижней части ионосферы (на высотах 70-- 80 км). Средние и короткие волны отражаются вышележащими ионосферными слоями.Именно вследствие отражения от ионосферы возможна дальняя связь на коротких волнах. Многократное отражение от ионосферы и земной поверхности позволяет коротким волнам зигзагообразно распространяться на большие расстояния, огибая поверхность Земного шара. Так как положение и концентрация ионосферных слоев непрерывно меняются, меняются и условия поглощения, отражения и распространения радиоволн. Поэтому для надежной радиосвязи необходимо непрерывное изучение состояния ионосферы. Наблюдения над распространением радиоволн как раз являются средством для такого исследования.В ионосфере наблюдаются полярные сияния и близкое к ним по~ природе свечение ночного неба -- постоянная люминесценция атмосферного воздуха, а также резкие колебания магнитного поля -- ионосферные магнитные бури.Ионизация в ионосфере обязана своим существованием действию ультрафиолетовой радиации Солнца. Ее поглощение молекулами атмосферных газов приводит к возникновению заряженных атомов и свободных электронов, о чем говорилось выше. Колебания магнитного поля в ионосфере и полярные сияния зависят от колебаний солнечной активности (см. главу первую, параграф 6). С изменениями солнечной активности связаны изменения в потоке корпускулярной радиации, идущей от Солнца в земную атмосферу. А именно корпускулярная радиация имеет основное значение для указанных ионосферных явлений.Температура в ионосфере растет с высотой до очень больших значений. На высотах около 800 км она достигает 1000°.
Говоря о высоких температурах ионосферы, имеют в виду то, что частицы атмосферных газов движутся там с очень большими скоростями. Однако плотность воздуха в ионосфере так мала, что тело, находящееся в ионосфере, например летящий спутник, не будет нагреваться путем теплообмена с воздухом. Температурный режим спутника будет зависеть от непосредственного поглощения им солнечной радиации и от отдачи его собственного излучения в окружающее пространство.
Экзосфера
Атмосферные слои выше 800--1000 км выделяются под названием экзосферы (внешней атмосферы). Скорости движения частиц газов, особенно легких, здесь очень велики, а вследствие чрезвычайной разреженности воздуха на этих высотах частицы могут облетать Землю по эллиптическим орбитам, не сталкиваясь между собою. Отдельные частицы могут при этом иметь скорости, достаточные для того, чтобы преодолеть силу тяжести. Для незаряженных частиц критической скоростью будет 11,2 км/сек. Такие особенно быстрые частицы могут, двигаясь по гиперболическим траекториям, вылетать из атмосферы в мировое пространство, «ускользать», рассеиваться. Поэтому экзосферу называют еще сферой рассеяния.
Ускользанию подвергаются преимущественно атомы водорода, который является господствующим газом в наиболее высоких слоях экзосферы.Недавно предполагалось, что экзосфера, и с нею вообще земная атмосфера, кончается на высотах порядка 2000--3000 км. Но из наблюдений с помощью ракет и спутников создалось представление, что водород, ускользающий из экзосферы, образует вокруг Земли так называемую земную корону, простирающуюся более чем до 20 000 км. Конечно, плотность газа в земной короне ничтожно мала. На каждый кубический сантиметр здесь приходится в среднем всего около тысячи частиц. Но в межпланетном пространстве концентрация частиц (преимущественно протонов и электронов) по крайней мере в десять раз меньше.С помощью спутников и геофизических ракет установлено существование в верхней части атмосферы и в околоземном космическом пространстве радиационного пояса Земли, начинающегося на высоте нескольких сотен километров и простирающегося на десятки тысяч километров от земной поверхности. Этот пояс состоит из электрически заряженных частиц -- протонов и электронов, захваченных магнитным полем Земли и движущихся с очень большими скоростями. Их энергия -- порядка сотен тысяч электрон-вольт. Радиационный пояс постоянно теряет частицы в земной атмосфере и пополняется потоками солнечной корпускулярной радиации.
7. Солнце и солнечная радиация. Лучистая энергия Солнца, солнечный ветер
Электромагнитная радиация, в дальнейшем называемая здесь просто радиацией или излучением, есть форма материи, отличная от вещества. Частным случаем ее является видимый свет; но к ней относятся также и невоспринимаемые глазом гамма-лучи, рентгеновы, ультрафиолетовые, инфракрасные лучи, радиоволны.
Радиация распространяется по всем направлениям от источника радиации, излучателя, в виде электромагнитных волн со скоростью, очень близкой к 300 000 км/сек. Электромагнитными волнами называются распространяющиеся в пространстве колебания, т. е. периодические изменения, электрических и магнитных сил; они вызываются движением электрических зарядов в излучателе.
Длины волн радиации измеряют с большой точностью, и потому удобно выражать их в единицах значительно меньших, чем микрон. Это миллимикрон (ммк) -- тысячная доля микрона и ангстрем (А) -- десятитысячная доля микрона. Например, длину волны 0,5937 мк можно еще написать: 593,7 ммк или 5937 А. Но в этой книге мы будем приводить длины волн преимущественно в микронах.
В метеорологии принято выделять коротковолновую и длинноволновую радиацию. Коротковолновой называют радиацию в диапазоне длин волн от 0,1 до 4 мк. Она включает, кроме видимого света, еще ближайшую к нему по длинам волн ультрафиолетовую и инфракрасную радиацию. Солнечная радиация на 99% является такой коротковолновой радиацией. К длинноволновой радиации относят радиацию земной поверхности и атмосферы с длинами волн от 4 до 100-120 мк.
К температурной радиации относятся известные из физики законы излучения Кирхгофа, Стефана--Больцмана, Планка, Вина. В частности, в соответствии с законом Стефана--Больцмана энергия излучаемой радиации растет пропорционально четвертой степени абсолютной температуры излучателя. Некоторые вещества в особом состоянии излучают радиацию в большем количестве и в другом диапазоне длин волн, чем это следует по их температуре. Таким образом, возможно, например, излучение видимого света при таких низких температурах, при которых вещество обычно не светится. Эта радиация, не подчиняющаяся законам температурного излучения, называется люминесценцией.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14