Физическая география
p align="left">Вблизи экватора, при большой влажности и облачности, эффективное излучение около 30 ккал/см2 в год на суше, как и на море. В направлении к высоким широтам оно растет, достигая под 60-й параллелью примерно 40--50 ккал/см2 в год над океанами. На суше оно больше, особенно в сухих, малооблачных и жарких тропических пустынях, где достигает 80 ккал/см2 в год.

Радиационный баланс земной поверхности за год положителен для всех мест Земли, кроме ледяных плато Гренландии и Антарктиды. Это значит, что годовой приток поглощенной радиации больше, чем эффективное излучение за то же время. Но это вовсе не означает, что земная поверхность год от года становится все теплее. Дело в том, что избыток поглощенной радиации над излучением уравновешивается передачей тепла от земной поверхности в воздух путем теплопроводности и при фазовых преобразованиях воды (при испарении с земной поверхности и последующей конденсации в атмосфере). Таким образом, хотя для земной поверхности не существует равновесия в получении и отдаче радиации, но существует тепловое равновесие: приток тепла к земной поверхности как радиационными, так и нерадиационными путями равен его отдаче теми же способами.

Радиации больше, чем эффективное излучение за то же время. Но это вовсе не означает, что земная поверхность год от года становится все теплее. Дело в том, что избыток поглощенной радиации над излучением уравновешивается передачей тепла от земной поверхности в воздух путем теплопроводности и при фазовых преобразованиях воды (при испарении с земной поверхности и последующей конденсации в атмосфере). Таким образом, хотя для земной поверхности не существует равновесия в получении и отдаче радиации, но существует тепловое равновесие: приток тепла к земной поверхности как радиационными, так и нерадиационными путями равен его отдаче теми же способами. Около 60-й параллели в обоих полушариях годовой радиационный баланс равен 20--30 ккал/см2 (карта IV). Отсюда к более высоким широтам он уменьшается и на материке Антарктиды отрицателен: от --5 до --10 ккал/см2. К низким широтам он возрастает: между 40° с. ш. и 40° ю. ш. годовые величины баланса свыше 60 ккал/см2, а между 20° с. ш. и 20° ю. ш. -- свыше 100 ккал/см2. На океанах радиационный баланс больше, чем на суше в тех же широтах, так как океаны поглощают радиацию больше. Существенные отклонения от зонального распределения имеются еще в пустынях, где баланс понижен (в Сахаре, например, до 60 ккал/см2) вследствие большого эффективного излучения в сухом и малооблачном воздухе. Баланс понижен также, но в меньшей мере, в районах с муссонным климатом, где в теплое время года облачность увеличена и, стало быть, поглощенная радиация уменьшена по сравнению с другими районами под той же широтой.

В декабре (карта V)радиационный баланс отрицателен в значительной части зимнего северного полушария: нулевая изолиния проходит немного южнее 40° с. ш. К северу от этой широты баланс становится отрицательным и в Арктике достигает --4 ккал/см2 и ниже. Южнее 40° с. ш. он возрастает до 10-- 14 ккал/см2 на южном тропике, откуда убывает до 4--5 ккал/см2 в прибрежных районах Антарктиды.

В июне (карта VI)радиационный баланс во всем северном полушарии положителен. Под 60--65° с. ш. он в общем больше 8 ккал/см2. С уменьшением широты он возрастает, но медленно. По обе стороны от северного тропика он достигает максимума: 12--14 ккал/см2 и выше, а на севере Аравийского моря 16 ккал/см2 и выше. Баланс остается положительным до 40° ю. ш. Южнее он переходит к отрицательным значениям и у берегов Антарктиды снижается до 1-2 ккал/см2.В Советском Союзе годовой радиационный баланс на суше в северных широтах порядка 10 ккал/см2, а на юге -- до 50 ккал/см2.

15. Тепловой баланс и тепловой режим земной поверхности и атмосферы. Различия в тепловом режиме почвы и водоемов. Суточный годовой ход температуры

Остановимся сначала на тепловых условиях земной поверхности и самых верхних слоев почвы и водоемов. Это необходимо потому, что нижние слои атмосферы нагреваются и охлаждаются больше всего путем радиационного и нерадиационного обмена теплом с верхними слоями почвы и воды. Поэтому изменения температуры в нижних слоях атмосферы прежде всего определяются изменениями температуры земной поверхности, следуют за этими изменениями.

Земная поверхность, т. е. поверхность почвы или воды (а также и растительного, снежного, ледяного покрова), непрерывно разными способами получает и теряет тепло. Через земную поверхность тепло передается вверх -- в атмосферу и вниз -- в почву или в воду.

Во-первых, на земную поверхность поступают суммарная радиация и встречное излучение атмосферы. Они в большей или меньшей степени поглощаются поверхностью, т. е. идут на нагревание верхних слоев почвы и воды. В то же время земная поверхность излучает сама и при этом теряет тепло.

Во-вторых, к земной поверхности приходит тепло сверху, из атмосферы, путем теплопроводности. Тем же способом тепло уходит от земной поверхности в атмосферу. Путем теплопроводности тепло также уходит от земной поверхности вниз, в почву и воду, либо приходит к земной поверхности из глубины почвы и воды.

В-третьих, земная поверхность получает тепло при конденсации на ней водяного пара из воздуха или, напротив, теряет тепло при испарении с нее воды. В первом случае выделяется скрытое тепло, во втором тепло переходит в скрытое состояние.

Не будем касаться некоторых менее важных процессов, например затраты тепла на таяние снега, лежащего на поверхности, или распространения тепла в глубь почвы вместе с водой осадков.

В любой промежуток времени от земной поверхности уходит вверх и вниз в совокупности такое же количество тепла, какое она за это время получает сверху и снизу. Если бы было иначе, не выполнялся бы закон сохранения энергии: следовало бы допустить, что на земной поверхности энергия возникает или исчезает. Однако возможно, что, например, вверх может уходить больше тепла, чем пришло сверху; в таком случае избыток отдачи тепла должен покрываться приходом тепла к поверхности из глубины почвы или воды.

Итак, алгебраическая сумма всех приходов и расходов тепла на земной поверхности должна быть равной нулю. Это и выражается уравнением теплового баланса земной поверхности.

Чтобы написать это уравнение, во-первых, объединим поглощенную радиацию и эффективное излучение в радиационный баланс.

Приход тепла из воздуха или отдачу его в воздух путем теплопроводности назовем Р. Такой же приход или расход путем теплообмена с более глубокими слоями почвы или воды назовем А. Потерю тепла при испарении или приход его при конденсации на земной поверхности обозначим LE, где L -- удельная теплота испарения и Е -- масса испарившейся или сконденсировавшейся воды.

Можно еще сказать, что смысл уравнения состоит в том, что радиационный баланс на земной поверхности уравновешивается нерадиационной передачей тепла (рис. 5.1).

Уравнение (1) действительно для любого промежутка времени, в том числе и для многолетнего периода.

Из того, что тепловой баланс земной поверхности равен нулю, не следует, что температура поверхности не меняется. Когда передача тепла направлена вниз, то тепло, приходящее к поверхности сверху и уходящее от нее вглубь, в значительной части остается в самом верхнем слое почвы или воды (в так называемом деятельном слое). Температура этого слоя, а стало быть, и температура земной поверхности при этом возрастают. Напротив, при передаче тепла через земную поверхность снизу вверх, в атмосферу, тепло уходит прежде всего из деятельного слоя, вследствие чего температура поверхности падает.

От суток к суткам и от года к году средняя температура деятельного слоя и земной поверхности в любом месте меняется мало. Это значит, что за сутки в глубь почвы или воды попадает днем почти столько же тепла, сколько уходит из нее ночью. Но все же за летние сутки тепла уходит вниз несколько больше, чем приходит снизу. Поэтому слои почвы и воды, а стало быть, и их поверхность день ото дня нагреваются. Зимой происходит обратный процесс. Эти сезонные изменения прихода - расхода тепла в почве и воде за год почти уравновешиваются, и средняя годовая температура земной поверхности и деятельного слоя год от года меняется мало.

Различия в тепловом режиме почвы и водоемов

Существуют резкие различия в нагревании и тепловых особенностях поверхностных слоев почвы и верхних слоев водных бассейнов. В почве тепло распространяется по вертикали путем молекулярной теплопроводности, а в легкоподвижной воде -- также путем турбулентного перемешивания водных слоев, намного более эффективного. Турбулентность в водоемах обусловлена, прежде всего, волнением и течениями. Но в ночное время суток и в холодное время года к этого рода турбулентности присоединяется еще и термическая конвекция: охлажденная на поверхности вода опускается вниз вследствие возросшей плотности и замещается более теплой водой из нижних слоев. В океанах и морях некоторую роль в перемешивании слоев ив связанной с ним передаче тепла играет также и испарение. При значительном испарении с поверхности моря верхний слой воды становится более соленым и плотным, вследствие чего вода опускается с поверхности в глубину. Кроме того, радиация глубже проникает в воду в сравнении с почвой. Наконец, теплоемкость воды велика в сравнении с почвой, и одно и то же количество тепла нагревает массу воды до меньшей температуры, чем такую же массу почвы.

В результате суточные колебания температуры в воде распространяются на глубину порядка десятков метров, а в почве -- менее чем до одного метра. Годовые колебания температуры в воде распространяются на глубину сотен метров, а в почве -- только на 10--20 м.

Итак, тепло, приходящее днем и летом на поверхность воды, проникает до значительной глубины и нагревает большую толщу воды. Температура верхнего слоя и самой поверхности воды повышается при этом мало. В почве же приходящее тепло распределяется в тонком верхнем слое, который, таким образом, сильно нагревается. Член А в уравнении теплового баланса (1) для воды гораздо больше, чем для почвы, а член Р соответственно меньше.

Ночью и зимой вода теряет тепло из поверхностного слоя, но взамен него приходит накопленное тепло из нижележащих слоев. Поэтому температура на поверхности воды понижается медленно. На поверхности же почвы температура при отдаче тепла падает быстро: тепло, накопленное в тонком верхнем слое, быстро из него уходит без восполнения снизу.

В результате днем и летом температура на поверхности почвы выше, чем температура на поверхности воды; ночью и зимой ниже. Это значит, что суточные и годовые колебания температуры на поверхности почвы больше, притом значительно больше, чем на поверхности воды.

Вследствие указанных различий в распространении тепла водный бассейн за теплое время года накапливает в достаточно мощном слое воды большое количество тепла, которое отдает в атмосферу в холодный сезон. Напротив, почва в течение теплого сезона отдает по ночам большую часть того тепла, которое получает днем, и мало накапливает его к зиме.

В средних широтах за теплую половину года в почве накапливается 1,5--3 ккал тепла на каждый квадратный сантиметр поверхности. В холодное время почва отдает это тепло атмосфере. Величина ±1,5--3 ккал/см2 в год составляет годовой теплооборот почвы. Под влиянием снежного покрова зимой и растительного летом годовой теплооборот почвы уменьшается; например, под Ленинградом на 30%. В тропиках годовой теплооборот меньше, чем в умеренных широтах, так как там меньше годовые различия в притоке солнечной радиации.

Годовой теплооборот больших водоемов примерно в 20 раз больше по сравнению с годовым теплооборотом почвы. Балтийское море отдает воздуху в холодное время 52 ккал/см2 и столько же накапливает в теплое время года. Годовой теплооборот Черного моря ±48 ккал/см2, Женевского озера ±35 ккал/см2. В результате указанных различий температура воздуха над морем летом ниже, а зимой выше, чем над сушей.

Суточный и годовой ход температуры на поверхности почвы

Измерение температуры на поверхности почвы является методически трудной задачей, особенно при пользовании жидкостными термометрами. Результаты измерений сильно зависят от условий установки термометра, не вполне отражают действительные температурные условия на поверхности почвы и недостаточно сравнимы. Лучшие результаты можно получить с помощью электрических термометров.

Температура на поверхности почвы имеет суточный ход. Минимум ее наблюдается примерно через полчаса после восхода солнца. К этому времени радиационный баланс поверхности почвы становится равным нулю -- отдача тепла из верхнею слоя почвы эффективным излучением уравновешивается возросшим притоком суммарной радиации. Нерадиационный же обмен тепла в это время незначителен.

Затем температура на поверхности почвы растет до 13-- 14 часов, когда достигает максимума в суточном ходе. После этого начинается падение температуры. Радиационный баланс в послеполуденные часы, правда, остается положительным; однако отдача тепла в дневные часы из верхнего слоя почвы в атмосферу происходит не только путем эффективного излучения, но и путем возросшей теплопроводности, а также при увеличившемся испарении воды. Продолжается и передача тепла в глубь почвы. Поэтому температура на поверхности почвы и падает с 13--14 часов до утреннего минимума.

Суточный ход температуры на поверхности почвы изобразится на графике время -- температура волнообразной кривой, более или менее напоминающей синусоиду. Высшая точка этой кривой характеризует максимум, низшая -- минимум температуры (рис. 5.2).

Максимальные температуры на поверхности почвы обычно выше, чем в воздухе на высоте метеорологической будки. Это понятно: днем солнечная радиация прежде всего нагревает почву, а уже от нее нагревается воздух.

В Московской области летом на поверхности обнаженной почвы наблюдаются температуры до +55°, а в пустынях -- даже до +80°.

Ночные минимумы температуры, наоборот, бывают на поверхности почвы ниже, чем в воздухе, так как, прежде всего, почва выхолаживается эффективным излучением, а уже от нее охлаждается воздух. Зимой в Московской области ночные температуры на поверхности (в это время покрытой снегом) могут падать ниже --50°, летом (кроме июля) -- до нуля. На снежной поверхности во внутренних районах Антарктиды даже средняя месячная температура в июне около --70°, а в отдельных случаях она может падать до --90°.Разность между суточным максимумом и суточным минимумом температуры называется суточной амплитудой температуры. В Московской области в зимние месяцы многолетняя средняя суточная амплитуда температуры на поверхности почвы (снега) равна 5--10°, в летние 10--20°. В отдельные дни суточные амплитуды, конечно, могут быть и выше и ниже многолетних средних значений в зависимости от ряда причин, прежде всего от облачности. В безоблачную погоду велика солнечная радиация днем и также велико эффективное излучение ночью. Поэтому суточный (дневной) максимум особенно высок, а суточный (ночной) минимум низок и, следовательно, суточная амплитуда велика. В облачную погоду дневной максимум понижен, ночной минимум повышен и суточная амплитуда уменьшена.Сильные ночные заморозки на почве весной и осенью обычно наблюдаются при ясном небе, т. е. при большом эффективном излучении. Суточный ход температуры почвы зависит также от экспозиции склонов, т. е. от того, как ориентирован наклон данного участка земной поверхности по отношению к странам света. Ночное излучение одинаково на склонах любой ориентации; но дневное нагревание почвы, конечно, будет наибольшим на южных склонах и наименьшим на северных. Суточный ход температуры почвы зависит также от почвенного покрова, что будет выяснено дальше.

Температура поверхности почвы, конечно, меняется и в годовом ходе. В тропических широтах ее годовая амплитуда, т. е. разность многолетних средних температур самого теплого и самого холодного месяца года, мала и с широтой растет. В северном полушарии на широте 10° она около 3°, на широте 30е около 10°, на широте 50° в среднем около 25°.

16. Изменение температуры с высотой. Инверсия температур. Заморозки

Подобно тому, как в почве или в воде нагревание и охлаждение передаются от поверхности в глубину, так и в воздухе нагревание и охлаждение передаются из нижнего слоя в более высокие слои. Следовательно, суточные колебания температуры должны наблюдаться не только у земной поверхности, но и в высоких слоях атмосферы. При этом, подобно тому как в почве и в воде суточное колебание температуры убывает и запаздывает с глубиной, в атмосфере оно должно убывать и запаздывать с высотой.

Нерадиационная передача тепла в атмосфере происходит, как и в воде, преимущественно путем турбулентной теплопроводности, т. е. при перемешивании воздуха. Но воздух более подвижен, чем вода, и турбулентная теплопроводность в нем значительно больше. В результате суточные колебания температуры в атмосфере распространяются на более мощный слой, чем суточные колебания в океане.

На высоте 300 м над сушей амплитуда суточного хода температуры около 50% амплитуды у земной поверхности, а крайние значения температуры наступают на 1,5--2 часа позже. На высоте 1 км суточная амплитуда температуры над сушей 1--2°, на высоте 2--5 км 0,5--1°, а дневной максимум смещается на вечер. Над морем суточная амплитуда температуры несколько растет с высотой в нижних километрах, но все же остается малой.

Небольшие суточные колебания температуры обнаруживаются даже в верхней тропосфере и в нижней стратосфере. Но там они определяются уже процессами поглощения и излучения радиации воздухом, а не влияниями земной поверхности.

В горах, где влияние подстилающей поверхности больше, чем на соответствующих высотах в свободной атмосфере, суточная амплитуда убывает с высотой медленнее. На отдельных горных вершинах, на высотах 3000 м и больше, суточная амплитуда еще может равняться 3--4°. На высоких обширных плато суточная амплитуда температуры воздуха того же порядка, что и в низинах: поглощенная радиация и эффективное излучение здесь велики, так же как и поверхность соприкосновения воздуха с почвой. Суточная амплитуда температуры воздуха на станции Мургаб на Памире в среднем годовом 15,5°, тогда как в Ташкенте 12°.

Инверсии температуры

В предыдущих параграфах мы неоднократно упоминали об инверсиях температуры. Теперь остановимся на них несколько подробнее, поскольку с ними связаны важные особенности в состоянии атмосферы.

Падение температуры с высотой можно считать нормальным положением вещей для тропосферы, а инверсии температуры -- отклонениями от нормального состояния. Правда, инверсии температуры в тропосфере -- частое, почти повседневное явление. Но они захватывают воздушные слои достаточно тонкие в сравнении со всей толщей тропосферы.

Инверсию температуры можно характеризовать высотой, на которой она наблюдается, толщиной слоя, в котором имеется повышение температуры с высотой, и разностью температур на верхней и нижней границах инверсионного слоя -- скачком температуры. В качестве переходного случая между нормальным падением температуры с высотой и инверсией наблюдается еще явление вертикальной изотермии, когда температура в некотором слое с высотой не меняется.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать