Экологические аспекты преподавания темы "Р-элементы" на уроках химии и экологии
p align="left">Экологические свойства азотной кислоты складываются из двух «половинок». Как сильная кислота, она разрушающе действует не только на живые ткани (кожу человека, лист растения), но и на почву, что достаточно актуально - кислотные (из-за присутствия оксидов азота и серы) дожди, увы, не редкость. При попадании кислоты на кожу возникает химический ожог, который болезненнее и заживает значительно дольше, чем термический. Это были основные экологические свойства катиона водорода.

2.2.2.1 Взаимодействие нитрат-иона с фауной и флорой

Нитрат-ион - неотъемлемая часть круговорота азота в природе. В обычных условиях и в разбавленных растворах устойчив, слабо проявляет окислительные свойства, не осаждает катионы металлов, тем самым способствуя транспортировке этих ионов с раствором в почве, растениях и т. п.

Нитрат-ион становится ядовитым только в больших количествах, нарушающих баланс других веществ. Например, при избытке нитратов в растениях уменьшается количество аскорбиновой кислоты. (Стоит напомнить, что живой организм настолько тонко организован, что любое вещество в больших количествах нарушает равновесие и, следовательно, становится ядовитым.)

Растения и бактерии используют нитраты для построения белков и других необходимых органических соединений. Для этого надо перевести нитрат-ион в ион аммония. Эта реакция катализируется ферментами, содержащими ионы металлов (меди, железа, марганца и др.). Из-за гораздо большей ядовитости аммиака и иона аммония в растениях хорошо отработана и обратная реакция перевода иона аммония в нитрат.

Животные не умеют строить все необходимые им органические соединения из неорганических - отсутствуют соответствующие ферменты. Однако микроорганизмы, живущие в желудке и кишечнике, этими ферментами обладают и могут переводить нитрат-ион в нитрит-ион. Именно нитрит-ион и действует как отравитель, переводя железо в гемоглобине из Fe2+ в Fe3+.

Соединение, содержащее Fe3+ и называемое метгемоглобином, слишком прочно связывает кислород воздуха, следовательно, не может отдавать его тканям. В результате организм страдает от недостатка кислорода, при этом происходят нарушения в работе мозга, сердца и других органов.

Обычно нитрит-ион образуется не в желудке, а в кишечнике и не успевает перейти в кровь и произвести все эти разрушения. Поэтому отравления нитратами достаточно редки. Существует, правда, и другая опасность: в нашем организме есть много веществ, в которых атомы водорода аммиака замещены на органические радикалы. Такие соединения называют аминами. При реакции аминов с нитрит-ионами образуются нитрозамины - канцерогенные вещества:

Они действуют на печень, способствуют образованию опухолей в легких и почках. Интересно, что активным замедлителем реакции образования нитрозаминов является давно нам знакомая аскорбиновая кислота [4].

2.3 VI-A группа периодической системы

2.3.1. Кислород

Кислород играет исключительно важную роль в природе. Все живые организмы на Земле используют кислород в процессе дыхания; процессы гниения органических остатков также протекают при участии кислорода: образующиеся при этом СО2, Н2О, N2 и минеральные соли вновь вступают в круговорот веществ в природе.

Все клетки человеческого организма требуют бесперебойной доставки кислорода, который используется в различных обменных реакциях. Кислород доставляется к тканям организма кровью. Кровь насыщается кислородом в легких, где этот газ присоединяется к содержащемуся в крови белку - гемоглобину. Гемоглобин обладает способностью присоединять кислород, превращаясь в оксигемоглобин (HbO2).

Количество кислорода, потребляемого организмом, отражает интенсивность окислительных процессов во всех органах и тканях и характеризует освобождающуюся при этом энергию. Потребление 1 л. кислорода соответствует выделению 19,7-24,7 кДж.

Уменьшение содержания кислорода в воздухе отрицательно сказывается на самочувствии человека: возникают головокружения, тошнота, удушье и т.д. Мозг человека и других млекопитающих не может функционировать без кислородного обмена, поэтому уже через несколько минут после прекращение дыхания наступает смерть.

Кислород составляет около 50 % массы почвы. В свободном состоянии он присутствует в почвенном воздухе, а в связанном состоянии входит в состав минеральных и органических компонентов твердой фазы почвы и почвенного раствора.

Кислород является энергетической основой сложной микробиологической жизни почвы. Почвы, особенно их верхние горизонты, населены множеством организмов, которые в процессе дыхания потребляют кислород и выделяют углекислый газ. Образующаяся при этом энергия используется для биологических синтезов, протекающих в почве, усвоения растениями минеральных солей и воды, перемещения веществ в растениях и т.п.

При недостатке кислорода в почве микробиологическая активность и энергетические ресурсы растений снижаются, а при отсутствии свободного кислорода в воздухе развитие растений прекращается. Недостаток кислорода в почве приводит к снижению ее окислительно-восстановительного потенциала.

При этом развиваются анаэробные процессы с образованием соединений, токсичных для растений, ухудшаются физические свойства почвы и снижается ее плодородие. В условиях хорошей обеспеченности кислородом в почве развиваются аэробные процессы и создаются условия для нормального роста растений и повышения их продуктивности.

Содержание кислорода в поверхностных водоемах определяется поступлением его из воздуха. Максимум содержания растворенного кислорода наблюдается летом, в период интенсивной фотосинтетической деятельности растительных организмов. В зимний период содержание кислорода в воде резко уменьшается из-за трудности реаэрации, т.е. насыщения воды кислородом и в связи с поступлением в водоемы подземных вод, почти не содержащих кислорода.

В придонных слоях поверхностных водоемов кислорода меньше, т.к. он расходуется на окисление данных отношений. Снижение концентрации растворенного кислорода может указывать на загрязнение водоемов органическими соединениями. При этом недостаток кислорода ограничивает способность природных водоемов к самоочищению. Поэтому при замедлении процессов самоочищения, водоемы подвергают искусственной аэрации [13].

В атмосфере происходят естественные и антропогенные изменения энерго- и массообмена. Эти изменения связаны с проблемами энергетики, сокращением фитопокрова планеты и др.

Переходя непосредственно к рассмотрению данных вопросов, остановимся, прежде всего, на проблеме энергетики.

На Земле с того момента, когда первобытные люди открыли способ добывания огня, началась эпоха кислородной энергетики, в основе которой лежит сжигание различных видов углеродного топлива, что требует расхода свободного кислорода и вызывает генерацию СО2. Эпоха этого вида энергетики продолжается и в настоящее время с той разницей, что со временем человечество открывало новые виды топлива, изменяло долевое их участие в выработке энергии и наращивало масштабы мирового потребления.

В середине 70-х годов нашего столетия ежегодное потребление кислорода на сжигание топлива составляет около 14 млрд. т. при одновременном поступлении около 18 млрд.т. СО2. К 2002 г. потребление кислорода на эту акцию может возрасти до 40 млрд. т/год. К этому необходимо добавить расход кислорода на дыхание, разложение органических остатков и др. С учетом всех видов расхода ежегодное потребление кислорода достигнет к 2020 г. 210-230 млрд. т., а вся фитосфера в год продуцирует 240 млрд. т. кислорода. Используя эти данные можно прийти к выводу, что к 2020 г. в атмосфере вместо 21% кислорода останется 8 %.

Таким образом, при таком расходе кислорода неизбежно начнется истощение запасов и деградация установившихся многовековых динамических равновесий в природных геосистемах.

Сокращение количества кислорода в атмосфере связано также с рядом других антропогенных и естественных факторов. Одним из этих факторов является сокращение лесного массива планеты. Древесина - ценное сырье, которое используется в настоящее время почти во всех областях деятельности человека (топливо, бумага, мебель и т.п.). сокращение лесного покрова вызывает ежегодно выделение кислорода.

Сокращение фитомассива происходит за счет вырубки лесов и лесных пожаров. Причем естественное возгорание происходит в одном случае из десяти, остальное количество пожаров вызвано небрежностью человека.

Растения океана выделяют огромное количество кислорода в атмосферу. Продукция кислорода в океане заметно убывает в связи с загрязнением океана, особенно шельфов, где продуцируется основная масса кислорода акваторий.

Расход кислорода идет и в естественных процессах, таких, например, как вулканические извержения.

2.3.2 Круговорот кислорода в природе

Цикл кислорода занимает на Земле около 2000 лет. Основным источником кислорода для современной атмосферы является фотосинтез автотрофных растений. Ежегодно в атмосферу поступает 201016 г кислорода за счет фотосинтеза. Некоторое количество кислорода поступает в атмосферу в результате фотодиссоциации водяного пара. При воздействии на молекулы водяного пара Н2О жесткого ультрафиолетового излучения (=0,175-0,203 мкм) образуется свободный водород, атомы которого в верхних слоях атмосферы могут обладать достаточно большими скоростями движения для преодоления силы тяготения Земли. Потеря некоторой части водорода, образовавшегося при диссоциации молекул воды, приводит к образованию соответствующего количества свободного кислорода. Но его масса не превышает 0,1 % от общей массы О2 в атмосфере. Основным источником поступления О2 в атмосферу является фотосинтезирующая деятельность растений на суше и фитопланктона фотосферы океана.

Расход О2 происходит на дыхание животных и людей, окисление органического вещества гетеротрофных организмов и на деструкцию мертвого органического вещества.

Суммарный приход О2 в атмосферу в результате его биотического круговорота обеспечивает расход О2 на окисление горных пород и ряда газов, поступающих в атмосферу из глубоких слоев Земли. К числу этих газов принадлежат Со, SO2, H2S, H2 и др. Расход кислорода на окисление указанных газов составляет менее ј его прихода, тогда как на окисление горных пород расход более ѕ прихода кислорода.

Кислород участвует в образовании и разрушении озона:

О2 + h O* + O*

О2 + O* + м O3 + м

О3 + O* O2 + O2

Эти процессы одновременно происходят в атмосфере с разной частотой.

Жизнедеятельность живых организмов поддерживается современным соотношением в атмосфере кислорода и углекислого газа. Естественные процессы потребления углекислого газа и кислорода и их поступление в атмосферу сбалансированы.

Еще важным антропогенным воздействием, сокращающим количество кислорода в атмосфере, являются летательные и космические аппараты. Например, космический корабль «Шаттл» за один свой полет сжигает столько кислорода, сколько его выделяют 48 гектаров леса в год. Кислород находится в непрерывном круговороте на нашей планете. Этот процесс является общепланетарным и связывает воедино атмосферу, гидросферу и литосферу [14].

В атмосфере кислород содержится в количестве около 21 % (об.). В гораздо меньших количествах он присутствует в атмосфере в виде озона - О3, образуя озоновый защитный слой, который располагается на высоте 25-35 км и защищает нашу планету от УФ-излучения. На низких высотах (тропосферный озон) он является одним из компонентов фотохимического смога и оказывает вредное воздействие на живые организмы.

2.3.3 Озоновый защитный слой

Озоновый защитный слой определяет верхний предел жизни в биосфере. Он появился вместе с появлением в земной атмосфере кислорода. Озона в атмосфере очень мало, всего 410-7 об.%. Однако, этого количества вполне достаточно, чтобы оградить планету от УФ-излучения. Озон обладает очень сильным поглощением. Он полностью поглощает всю энергию в полосе от 2900 до 2200 А, что совершенно исключает попадание на поверхность Земли губительных для всего живого солнечных лучей короче 2900 А. Кроме того, озон поглощает ИК излучение Земли, препятствуя ее охлаждению.

Озон образуется в атмосфере по уравнению:

2 3 (1)

Атомы кислорода, необходимые для образования озона, получаются за счет фотохимической диссоциации молекул:

О2 + h = 2O < 240 нм

Возможна реакция образования озона:

О2 + O* + м O3 + м (2)

где м - любая частица, служащая для отвода энергии от образующейся молекулы озона.

При высоких температурах, когда содержание атомарного кислорода велико, равновесие реакции (2) сильно сдвинуто влево и образования озона не происходит. При низких температурах, когда равновесие по реакции (2) сдвинуто вправо, парциальное давление атомарного кислорода слишком низкое, что также препятствует образованию озона. Для получения значительных концентраций озона необходимо сочетание двух условий: сравнительно низкой температуры, обеспечивающей достаточный сдвиг равновесия в сторону образования озона, и больших концентраций атомарного кислорода. Выполнение этих условий возможно, когда диссоциация молекул кислорода обеспечивается в результате нетермического воздействия на систему, например за счет облучения [15].

Озон разрушается, поглощая излучение с длиной волны меньше 1130 нм (ИК излучение), но максимум поглощения наблюдается при длине волны короче 320 нм (УФ-излучение), при этом происходит образование молекулярного кислорода и атомарного кислорода:

О3 + h = O2 + О (3)

Реакции (2) и (3) называются нулевым циклом озона.

Значительный вклад в процессы, протекающие с участием оксидов азота, соединений хлора и др. Рассмотрим эти циклы более подробно.

1. Водородный цикл. При поглощении кванта света с длиной волны менее 240 нм молекула воды распадается по уравнению:

Н2О + h = OН + Н

Гидроксидные радикалы образуются и при взаимодействии молекул воды или метана с возбужденным атомом кислорода

О + Н2О 2ОН

О + СН4 ОН + СН3

Образовавшийся в этих процессах гидроксидный радикал вступает в реакцию с О3:

ОН + О3 НО2 + О2

НО2 + О ОН + О2

О3 + О ОН + О2

2. Азотный цикл. Оксид азота при взаимодействии с озоном окисляется до диоксида азота, но при взаимодействии NO2 c атомарным кислородом в невозбужденном состоянии вновь образуется оксид азота:

NO + O3 NO2 + O2

NO2 + O NO + O2

O3 + O 2O2

3. Хлорный цикл. Атом хлора при взаимодействии с молекулой озона образует оксид хлора и молекулу хлора. Оксид хлора способен взаимодействовать с атомарным кислородом, находящимся в невозбужденном состоянии, с образованием атомарного хлора и молекулы кислорода

Cl + O3 ClO +O2

ClO + O Cl + O2

O3 + O 2O2

Атомарный хлор появляется в стратосфере при фотохимическом разложении фреонов, например:

CFCl3 + hv CFCl2 + Cl

В процессах, вызывающих разрушение озона, наблюдается обрыв цепи за счет протекания реакций:

СН4 + ОН СН3 + Н2О

ОН + НО2 Н2О + О2

ОН + NO HNO2

ClO + NO2 ClONO2

Получающиеся вещества при этих реакциях безвредны для озонового слоя [16].

Расчеты показали, что если все содержащиеся в атмосфере молекулы озона равномерно распределить над поверхностью Земли, то толщина образовавшейся оболочки составит лишь около 3 мм.

«Озоновой дырой» называется уменьшение концентрации озона во всех областях атмосферы над определенной территорией. Наиболее большой «озоновой дырой» является дыра над Антарктидой. Она носит сезонный характер и проявляется лишь в весенний период.

«Озоновые дыры» могут разрастаться под влиянием антропогенных газообразных выбросов, которые разрушают озон. В связи с этим в Монреале в 1990 г был подписан первый международный акт, ограничивающий производство веществ, разрушающих озоновый слой. Этот акт был подписан 30 странами. Основные его положения:

производство фреонов прекратить полностью к 2000 г.

производство тетрахлорэтана прекратить полностью к 2000 г.

производство галонов прекратить к 2000 г. (за исключением соединений, для которых не известны альтернативные заменители)

производство 1,1,1-трихлорэтана прекратить полностью к 2005 г.

Монреальский протокол, являющийся первым примером коллективного мирового сотрудничества в решении глобальных проблем, в настоящее время успешно выполняется [16].

2.3.4 Тропосферный озон

Основная часть общего содержания озона - около 90 %, приходится на стратосферу и только 1 % на тропосферу. Глобальная фоновая среднегодовая концентрация озона в приземном слое не превышает 100 мкг/м3.

Озон является одним из самих важных химических компонентов фотохимического смога. Этот тип смога характеризуется тем, что он образуется в результате фотохимических реакций. Фотохимический смог образуется в ясную погоду при низкой влажности воздуха, причем максимальная концентрация вызывающих раздражение органов чувств веществ наблюдается вскоре после полудня. Химически он действует как окислитель (усиливает коррозию металлов, приводит к растрескиванию резины и т.д.). Фотохимический смог вызывает улюдей сильное раздражение слизистой оболочки дыхательных путей и глаз, губит листву на деревьях. В атмосфере наблюдается появление голубоватой дымки или беловатого тумана и связанное с этим ухудшение видимости. Озон является ответственным за ряд свойств смога.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать