Экологические аспекты преподавания темы "Р-элементы" на уроках химии и экологии
p align="left">Рис. 9. Воздействия кислотных дождей на окружающую среду

Первыми жертвами кислотных дождей стали озера и реки. Сотни озер в Скандинавии, на северо-востоке США и на юго-востоке Канады, в Шотландии превратились в кислотные водоемы. Кислотные дожди привели к резкому снижению продуктивности 2500 озер Швеции. В Норвегии примерно половина поверхностных вод имеет повышенную кислотность, из 5000 озер в 1750 исчезла рыба. В провинции Онтарио (Канада) пострадало 20% озер, а в провинции Квебек - до 60% озер.

При повышении кислотности воды (еще до критического порога выживания водной биоты, например для моллюсков таким порогом является рН = 6, для окуней - рН = 4,5) в ней быстро нарастает содержание алюминия за счет взаимодействия гидроксида алюминия придонных пород с кислотой:

Аl(ОН)3 + 3H+ ® Al3+ + 3Н2О.

Даже небольшая концентрация ионов алюминия (0,2 мг/л) смертельна для рыб. В то же время фосфаты, обеспечивающие развитие фитопланктона и другой водной растительности, соединяясь с алюминием, становятся малодоступными этим организмам.

Повышение кислотности приводит к появлению в воде высокотоксичных ионов тяжелых металлов - кадмия, свинца и других, которые прежде входили в состав нерастворимых в воде соединений и не представляли угрозы живым организмам.

Дефицит питательных веществ и интоксикация воды приводят к своеобразной «стерилизации» водоемов. Закисленная и токсичная вода разрушает скелеты рыб и раковины моллюсков, а главное - снижает репродуктивные процессы. В свою очередь, это приводит к сокращению популяций наземных животных и птиц, связанных с водной биотой трофическими цепями (цепи питания).

«Мертвая вода» усиливает дефицит пресной воды, обусловленный возрастающими масштабами хозяйственного и бытового использования и ее загрязнением.

Что касается состояния рек и озер России, то качество воды большинства водных объектов в течение всех последних лет наблюдений и контроля со стороны Госкомэкологии не отвечает нормативным требованиям из-за сильного загрязнения промышленными сточными водами. Все (обратите на это внимание!) основные реки России и их крупные притоки оцениваются как «загрязненные» или «сильно загрязненные». При таком положении кислотные осадки мало изменяют качественные характеристики воды.

Почвенные организмы более приспособлены к пониженным значениям рН почвенной влаги, но и они угнетаются возрастающей кислотностью, особенно азотфиксирующие бактерии и грибницы. Разрыхляющие почву дождевые черви могут жить в слабокислых почвах, в таких условиях они «нейтрализуют» почвенные кислоты с помощью выделяемой ими извести; в кислой почве дождевые черви погибают. Среди других нарушений, происходящих в почве вследствие ее подкисления, следует отметить нарушение процессов питания растений, разрушение их корневой системы.

Почвенное подкисление считается одной из основных причин усыхания лесов умеренной зоны северного полушария, причем этот фактор долгодействующий, который может проявиться через много лет после прекращения вредных кислотообразующих выбросов в атмосферу. Больше всего страдают елово-пихтовые и дубовые леса. Непосредственное воздействие кислотных осадков приводит к нарушению листовой поверхности, процессов транспирации (испарение с поверхности листа) и фотосинтеза за счет разрушения хлорофилла (это воздействие можно определить зрительно по побурению листьев и игл).

Многообразно косвенное влияние: загрязнения выступают в роли пусковых механизмов биологических и биохимических процессов, ослабляющих растение, нарушающих его рост, повышающих чувствительность к климатическим изменениям, делающих его менее устойчивым к вредителям - грибам, бактериям, жукам и др.

В то же время подкисление почвы азотокислыми дождями стимулирует развитие лесных вредителей.

Наибольший урон кислотные дожди нанесли лесам Центральной Европы, в частности 35% лесов Германии (на площади более 2,5 млн га) повреждены ими. Ущерб от кислотных дождей для европейских лесов оценивается в 118 млн м3 древесины в год (из них около 35 млн м3 на европейской территории России). В меньшей степени от кислотных дождей страдают сельскохозяйственные растения, поскольку подкисление почв здесь можно контролировать агрохимикатами.

Воздействию кислотообразующих газов и кислотных осадков подвергаются органические материалы - кожа, бумага, ткани, резина, красители. Бумага, большинство тканей, кожа образованы гидрофильными веществами, которые накапливают воду между волокнами. Кислоты постепенно гидролизуют макромолекулы (главным образом целлюлозы и белков), в результате чего эти материалы становятся хрупкими и разрушаются. Как восстановитель диоксид серы вызывает обесцвечивание красителей, что приводит к выцветанию тканей.

Известняк, мел, мрамор, туф, содержащие карбонат кальция, разрушаются под действием кислотных дождей:

СаСО3 + Н2SО4 ® Са2+ + SO42-+ СО2­ + Н2О,

СаСО3 + 2HNO3 ® Са2+ + 2NО3- + СО2­ + Н2О.

Многие скульптуры и здания в Риме, Венеции и других городах, памятники зодчества, такие, как Акрополь в Афинах, Кёльнский собор и другие, за несколько последних десятилетий получили значительно большие повреждения, чем за все предыдущее время. Под угрозой полного разрушения в результате действия кислотных осадков находятся более 50 тыс. скульптур скального «Города Будд» под Юньанем в Китае, построенного 15 веков назад.

Из бетона и других минеральных строительных материалов, а также стекла под действием кислотных дождей выщелачиваются не только карбонаты, но и силикаты. Если рН осадков достигает значений, равных 4,5-3, то ионы алюминия начинают вымываться из кристаллической решетки. С уменьшением рН интенсивно протекает разрушение силикатной кристаллической структуры, как, например, в полевом шпате (сырье для производства керамики, стекла, цемента):

3KAlSi3O8 + 12Н2О + 2H+ ® КAl3Si3O10(ОН)2 + 6H4SiO4 + 2К+,

2КAl3Si3O10(ОН)2 + 18Н2О + 2Н+ ® 3Al2O3(Н2О)3 + 6H4SiO4 + 2К+.

Подобным образом кислотные дожди разрушают древние оконные стекла церквей, соборов и дворцов. Старинное стекло из-за повышенного содержания оксидов щелочных и щелочно-земельных металлов более подвержено действию кислот, чем современное.

Металлы под действием кислотных дождей, туманов и рос разрушаются еще быстрее, чем строительные материалы и стекло. Корка образующегося на поверхности железных изделий гигроскопичного сульфата железа (II) окисляется кислородом воздуха, при этом образуется основная соль сульфата железа (III), являющаяся составной частью ржавчины:

2FeSO4 + Н2О + 0,5O2 ® 2Fe(ОН)SO4.

Такой же ущерб претерпевают изделия из бронзы, на которых образуется так называемая патина, состоящая из карбонатов и сульфатов. Слои пыли и копоти на поверхности создают пленку, которая удерживает влагу и в которой постоянно растворяются кислотообразующие газы. Кислота разъедает металл, переводя его в виде ионов в раствор, что становится заметным при отслаивании корки налета, достигающей миллиметровой толщины. Изделие при этом теряет свою первоначальную форму.

Загрязнение воздуха кислотообразующими выбросами оказывает многообразное вредное влияние и на организм человека.

Вдыхание влажного воздуха, содержащего диоксид серы, особенно опасно для пожилых людей, страдающих сердечно-сосудистыми и легочными заболеваниями, в тяжелых случаях может возникнуть отек легких. Вредно это и для здоровых людей, поскольку SO2 и сульфатные частицы обладают канцерогенным действием. Установлена тесная взаимосвязь между повышением смертности от бронхитов и ростом концентрации диоксида серы в воздухе. Во время трагического лондонского тумана 1952 г. более 4000 смертей было отнесено за счет повышенного содержания во влажном воздухе диоксида серы и сульфатных частиц.

Многочисленные исследования показали увеличение числа заболеваний дыхательных путей в районах, воздух которых загрязнен диоксидом азота NО2. Попадая в дыхательные пути, он взаимодействует с гемоглобином крови, затрудняя перенос кислорода к органам и тканям, вызывает респираторные, астматические и сердечные заболевания. В феврале 1972 г. в Японии по этой причине заболело более 70 000 человек, для многих из них заболевание имело летальный исход. Кислотные дожди подобным образом действуют и на животных.

6. Меры по охране атмосферы от кислотообразующих выбросов

Чистота атмосферного воздуха планеты - одно из приоритетных направлений природоохранной деятельности национальных правительств, которая развивается в рамках программы, принятой на ХIX специальной сессии Генеральной Ассамблеи Организации Объединенных Наций в июне 1997 г.

Международными соглашениями установлены критические нормы выбросов диоксида серы и оксидов азота, ниже которых их воздействие на наиболее чувствительные компоненты экосистем не обнаруживается, а также ряд рекомендаций по осуществлению снижения этих выбросов.

Основными на сегодняшний день методами снижения загрязнения атмосферы, в том числе кислотообразующими выбросами, являются разработка и внедрение различных очистных сооружений и правовая защита атмосферы.

Ведутся исследования по снижению загрязнений от выхлопных газов автомобилей. Наибольшие трудности здесь вызывает именно уменьшение выбросов оксидов азота, которые помимо образования кислотных осадков ответственны за появление фотохимических загрязнителей (фотохимический смог) и разрушение озонового слоя в стратосфере. Для решения этой проблемы ведутся работы по созданию различных каталитических конвертеров, преобразующих оксиды азота в молекулярный азот.

Среди эффективных методов борьбы с выбросами окисленной серы в атмосферу через дымовые трубы следует отметить различные газоочистители, такие, как электрические фильтры, вакуумные, воздушные или жидкие фильтры-скрубберы. В последних газообразные продукты сгорания пропускаются через водный раствор извести, в результате образуется нерастворимый сульфат кальция СаSО4. Этот метод позволяет удалить до 95% SО2, но является дорогостоящим (снижение температуры дымовых газов и понижение тяги требует дополнительных затрат энергии на их подогрев; кроме того, возникает проблема утилизации СаSO4) и экономически эффективен лишь при строительстве новых крупных предприятий. Такой же дорогостоящий метод очистки дымовых газов от оксидов азота с помощью изоциановой кислоты НNСО (удаляется до 99% оксидов азота, превращающихся в безвредные азот и воду).

Восстановление нормальной кислотности водоемов возможно за счет известкования, при этом не только уменьшается кислотность воды, но и повышается ее буферная способность, т. е. сопротивляемость по отношению к будущим кислотным осадкам.

Известкование можно применять и для защиты лесов от кислотных дождей, используя распыление с самолетов свежемолотого доломита (СаСО3*MgCO3), который реагирует с кислотами с образованием безвредных веществ:

СаМg(СО3)2 + 2Н2SО3 = СаSО3 + МgSО3 + 2СО2­ + 2Н2О,

СаМg(СО3)2 + 4НNО3 = Са(NО3)2 + Мg(NО3)2 + 2СО2­ + 2Н2О.

Для защиты памятников культуры и ценных архитектурных сооружений используют покрытия из высокомолекулярных соединений - силиконов и др.; для защиты металлических изделий - покрытия, образующие устойчивую к кислотам оксидную пленку.

Все перечисленные меры представляют собой реализацию метода «контроля на выходе» - снижение концентрации загрязнителей на стадии их попадания в атмосферу. Более эффективен с экологической точки зрения метод «контроля на входе», предусматривающий очистку топлива от потенциальных загрязнителей, использование экологически более чистых источников энергии и создание безотходных технологий - технологических процессов, сопоставимых с природными циклами в биосфере.

Содержание серы в выбросах можно уменьшить, используя низкосернистый уголь, а также путем физической или химической его промывки. Первая позволяет очистить уголь от неорганических примесей серы, таких, как сульфиды металлов. С помощью второй удаляется органическая сера. Отметим, что физические методы очистки малорентабельны, а применение химических методов очистки из-за ряда технических сложностей эффективно лишь на вновь строящихся электростанциях. Для средних и малых предприятий энергетики используется метод сжигания топлива в кипящем слое, при котором удаляется до 95% диоксида серы и от 50 до 75% оксидов азота.

Перспективна замена бензина в автомобилях другими видами топлива, применение газобаллонных автомобилей, использующих природный газ, и электромобилей; использование на электростанциях в качестве топлива природного газа.

Реально заменить горючие ископаемые могут возобновимые экологически чистые энергетические ресурсы, такие, как солнечная энергия, ветер, морские приливы, термальные источники недр Земли. Пока возможности таких энергопроизводств относительно ограничены, но тем не менее, например, в Дании ветровые электростанции дают около 12% энергии (столько же дают все АЭС в России).

Энергосбережение, внедрение новых неэнергоемких технологий и безотходных и малоотходных технологий производственных процессов, применение альтернативных источников энергии, все меры экологического контроля способны решить проблему загрязнения атмосферного воздуха, оздоровить окружающую среду, снять угрозу необратимых отрицательных изменений в биосфере Земли. [21-25]

Далее в плане занятий - просмотр видеофильма и контрольная работа.

Вариант контрольной работы

Записать реакции, приводящие к появлению аэрозолей серной кислоты при выбросах в атмосферу сернистого газа.

Воздействие кислотных дождей на водную биоту.

Основные методы «контроля на входе» выбросов диоксида серы в атмосферу.

ГЛАВА 4. ЗАДАЧИ И ТЕСТЫ

4.1 Задачи и тесты по теме «V-A группа ПС»

Задача 1. На гашеную известь, взятую в небольшом количестве подействовали 3,15 кг чистой азотной кислоты. Какую массу нитрата кальция Ca(NO3)2 получили, если практический выход составляет 98%?

Решение:

Ca(OH)2 +2HNO3 Ca(NO3)2 + 2H2O

M (HNO3)=63 г/моль; m (HNO3)=263 =126 кг.; M (Ca(NO3)2)=164 г/моль; m (Ca(NO3)2)=164 кг.

Находим теоретический выход:

126:3,15=164X1; m(Ca(NO3)2)теор =4,1кг.

Находим 98% - ный выход:

4,1 кг (Ca(NO3)2) соотв. 100% - ному выходу

X2 -//- 98% - ному выходу

кг

Ответ: m (Ca(NO3)2)практ. = 4,02 кг.

Задача 2. Химический завод выбрасывает в атмосферу 120 т. нитрата аммония. Какова ежесуточная потребность в аммиаке (в м3, при 0С и 101,3 кПа)?

Решение:

NH3 + HNO3 NH4NO3

M(NH4NO3) = 80г.

Составим пропорцию:

X литров NH3 соответствуют 120106 граммам NH4NO3

22,4 литров NH3 соответствуют 80 граммам NH4NO3,

Тогда

Ответ: Ежесуточная потребность завода в аммиаке составляет 33600м3

Задача 3. Как известно, памятник Кузьме Минину выполнен из бронзы (75% Cu, 25% Sn), поэтому он постепенно разрушается под действием кислотных дождей. Написать реакцию коррозии памятника. Какой объем газа выделится при полном разрушении памятника? Какие меры принимаются для предотвращения коррозии? Масса памятника принимается равной 2750 кг.

Решение:

4HNO3 + Cu = Cu(NO3)2 + 2NO2 + 2NO2

2750 кг.100%

X1кг75% Сu

кг.

Составляем пропорцию:

2062,5 103г. Cu X2 л. NO2

64 л. Cu 44,8 л. NO2

л.

Ответ: 1) при полном разрушении памятника Кузьме Минину под действием кислотных осадков выделится 1443,75 м3 NO2; 2) для предотвращения коррозии памятник несколько раз в год протирают антикоррозионными органическими веществами.

Задача 4. Почва содержит 3,1 % органического вещества. Вычислить процентное содержание (W) углерода и азота в почве, если органическое вещество содержит 60% углерода и массовое отношение С:N=8:1.

Решение:

Допустим, что 100% - это 100 г, тогда m (орг. в-ва) = 3,1г.

m(С) = г.

m(N) = г.

Процентное содержание углерода и азота в 100 г почвы:

Wс=

WN= (m(N) / m(почвы)) 100 %

WN = (0,23г./100г.) 100 % = 0,23%

Ответ: Процентное содержание углерода и азота в 100 г = 1,86% и 0,23%.

Задача 5. Свекла, выращенная в г. Курске имеет содержание нитратов 3000 мг/кг(что в 2 раза больше предельно допустимой концентрации). Сколько килограммов этой свеклы надо счесть, чтобы смертельной дозы для человека (15гр.)?

Решение:

в 1кг. свеклы 3гр (NO3-)

d x кг. свеклы 15гр (NO3-)

Ответ: 5кг свеклы, выращенной в г. Курске, содержит смертельную дозу нитрат ионов [20, 26, 27].

Задача № 6. При нормальных условиях 12 л газовой смеси, состоящей из аммиака и углекислого газа, имеют массу 18 г. Сколько литров каждого из газов содержит смесь? Каковы объемные доли каждого компонента в смеси?

Решение

Обозначим V(NH3) = x л, V(CO2) = (12 - x) л.

Тогда (NH3) = x/22,4 моль, (СО2) = (12 - x)/22,4 моль,

, .

Составим уравнение:

, х = 4,62 л NH3;

V(CO2) = 12 - 4,62 = 7,38 л.

Найдем объемные доли газов в смеси:

(NH3) = 4,62/12 = 0,385 или 38,5%,

(СО2) = 1 - 0,385 = 0,615 или 61,5%.

Задания для самоконтроля

1. Напишите уравнения практически осуществимых реакций:

а) NH4Cl + AgNO3 …;

в) AgCl + NH4NO3 …;

д) HNO3 + SiO2 …;

ж) Hg(NO3)2 …;

и) Fe2O3 + HNO3 …;

б) (NH4)2SO4 + NaOH …;

г) HNO3 (разб.) + Cu …;

е) HNO3 + MgCO3 …;

з) NH3 + O2 …;

к) NH4Cl …;

2. Напишите уравнения реакций следующих превращений:

Составьте схемы электронного баланса, расставьте коэффициенты в уравнениях реакций:

а) HNO3 + С СО2 + NO + H2O;

б) HNO3 + AsH3 H3AsO4 + NO2 + H2O;

в) HNO3 + P + H2O H3PO4 + NO;

г) HNO3 + CuS Сu(NO3)2 + H2SO4 + NO + H2O;

д) MnO2 + K2CO3 + KNO3 K2MnO4 + KNO2 + CO2;

е) K2CrO4 + (NH4)2S + H2O Сr(OH)3 + KOH + NH4OH + S.

4. При взаимодействии 28 л (н. у.) аммиака с раствором азотной кислоты массой 400 г, в котором содержится 0,24 массовые доли HNO3, образуется нитрат аммония массой 90 г. Вычислите выход продукта реакции в процентах от теоретически возможного. Ответ. 90%.

5. При нагревании технического нитрата меди(II) массой 75,2 г выделяется кислород объемом 4 л (н. у.). Рассчитайте массовую долю примесей в образце нитрата. Ответ. 10,7%.

6. Имеется смесь хлорида, карбоната и нитрата натрия массой 50 г. Определите массовую долю каждого компонента смеси, если известно, что при действии на нее избытка соляной кислоты выделяется газ объемом 2,24 л (н. у.), а при прокаливании такой же массы смеси выделяется кислород объемом 2,24 л (н. у.). Ответ. (NaCl) = 44,8%, (Na2CO3) = 21,2%, (NaNO3) = 34%.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать