Концепции современного естествознания
p align="left">

Сплошная среда и упругие волны

Волной называют распространение в пространстве изменения состояния. Изменение состояния в физике означает изменение значения какой-либо физической величины. Например, при распространении звуковых волн в каждой точке пространства изменяется с течением времени деформация (сжатие-разрежение), в случае электромагнитной волны - значения напряженности электрического и магнитного полей

Волновое движение возникает в том случае, если движение данной частицы влияет на движение соседних с ней частиц и испытывает их влияние.

Примеры волнового движения: морские волны, звуковые волны, электромагнитные (световые и радиоволны).

Если частицы перемещаются перпендикулярно направлению распространения волны, волны называются поперечными. Если частицы перемещаются взад-вперед вдоль направления распространения волны, волны называются продольными. Помимо бегущих волн бывают волны стоячие. Синусоидальная волна, форма которой между двумя закрепленными точками остается неизменной, а амплитуда меняется в зависимости от времени, называется стоячей волной.

Волны, распространяющиеся прямолинейно вдоль струны или пружины, называются одномерными. От источника звука в воздухе распространяются сферические (трехмерные) звуковые волны. Колеблющаяся доска возбуждает на поверхности воды двумерные плоские волны.

Взаимодействие: концепции близкодействия и дальнодействия

Большинство сил, с которыми мы имеем дело в повседневной жизни, представляют собой силы контактного типа, возникающие при соприкосновении. В древности для людей реальными были только контактные силы. Казалось совершенно невероятным, что Солнце действует реальной силой на Землю, поскольку между этими телами нет контакта.

Создание Ньютоном теории всемирного тяготения привело к возникновению совершенно новых представлений. Согласно этой теории, Земля, Луна, Солнце и вообще все планеты действуют друг на друга определенными силами, несмотря на то, что они не соприкасаются и между ними нет никакой материальной среды, которая могла бы передавать действие сил.

Для описания гравитационного взаимодействия пришлось ввести понятие о “действии на расстоянии”. Ньютон не пытался объяснить, почему действие гравитационной силы передается через пустоту. Для решения проблемы сил, действующих на расстоянии, “изобрели” эфир. Представление об эфире просуществовало вплоть до начала нашего века и было окончательно развенчано теорией относительности Эйнштейна. Место теории эфира заняла теория поля.

Любую физическую величину, которая имеет вполне определенное значение в каждой точке пространства, можно рассматривать как величину, характеризующую поле.

С математической точки зрения поле - это произвольная функция или набор функций, координат r = x,y,z и времени t.

Большинство представляющих интерес для физики полей являются векторными; к ним относятся гравитационное, электрическое, магнитное и другие поля.

Соответствующая величина, характеризующая поле, изменяется в пространстве непрерывно в математическом смысле. Именно таким образом меняются некоторые физические величины, к примеру вектор гравитационной силы.

Электромагнитное поле и электромагнитные волны

С открытием М.Фарадея в науку вошло представление об электромагнитном поле как о материальной среде, как о непрерывной материи, заполняющей пространство. Поле является материальной субстанцией. Электромагнитная картина мира утвердилась благодаря работам Максвелла.

Майкельсон доказал, что свет - электромагнитное поле - сам является видом материи, для его распространения нет необходимости в какой-либо среде - эфире.

Эйнштейн, будучи еще шестнадцатилетним юношей, подолгу размышлял о свойствах электромагнитного поля, и в частности о том, каким представлялось бы электромагнитное поле для наблюдателя, который “летит” вдогонку за ним со скоростью света. Впоследствии он рассказывал, что никак не мог себе представить, каким было бы электромагнитное поле для такого наблюдателя, и, наверное, из этой невозможности родилась позже уверенность, что “луч света нельзя догнать”: с какой бы скоростью мы ни гнались за ним, он уходит от нас со скоростью 300 000 км/сек - скорость света во всех инерциальных системах отсчета одинакова. Это один из постулатов специальной теории относительности.

При ускоренном движении электрических зарядов возникает изменяющееся во времени электромагнитное поле и источник испускает электромагнитные волны. Электромагнитное излучение обладает энергией и импульсом. Например, электромагнитное излучение переносит на Землю энергию Солнца и снабжает ее светом и теплом, необходимыми для поддержания жизни. Импульс, связанный с падающей на Землю солнечной энергией, очень мал, поэтому мы его не замечаем (не испытываем давления, обусловленного импульсом световых волн). Однако действие импульса солнечного излучения (радиационное давление, или давление света) можно видеть, наблюдая хвосты комет. Под действием радиационного давления хвосты комет направлены от Солнца.

Многообразие диапазонов электромагнитного излучения.

{bml ris1.bmp}

Электронные методы позволяют генерировать электромагнитные волны с частотами до Гц. Эта область частот простирается от радиоволн до микроволн.

В диапазоне радиоволн работают обычное радиовещание, телевидение, воздушная и морская связь, любительские радиостанции; радиолокация и радиорелейные линии используют микроволновый (сверхвысокочастотный) диапазон.

Для генерации излучения с частотами выше микроволнового диапазона используется излучение атомов. Верхний предел частот, которые могут генерировать атомные системы, составляет около Гц; излучение более высоких частот (гамма-лучи) испускается атомными ядрами.

Различные диапазоны электромагнитных волн получили разные названия, но все эти виды излучения имеют единую природу и отличаются друг от друга только своими частотами

Интерференция, дифракция и поляризация света

В любых волновых процессах, где складываются две или несколько волн, происходит интерференция. Импульсы противоположных знаков при встрече гасят друг друга - это деструктивная интерференция. Если знаки импульсов одинаковы, то при встрече они складываются - это конструктивная интерференция.

Дифракция вызывает огибание волной препятствия и заставляет волну расходиться после прохождения через узкое отверстие.

В 1808 году французский физик Э.Малюс на основании опытов с кусками исландского шпата и опираясь на корпускулярную теорию света Ньютона, предположил, что корпускулы в солнечном свете ориентированы беспорядочно, но после отражения от какой-либо поверхности или прохождения сквозь анизотропный кристалл они приобретают определенную ориентацию. Такой “упорядоченный” свет он назвал поляризованным.

При распространении электромагнитной волны в ней совершают колебания вектор напряженности электрического поля E и вектор индукции магнитного поля B. Эти векторы взаимно перпендикулярны и лежат в плоскости, перпендикулярной распространению волны. Если колебания вектора E происходят в одной плоскости, то говорят, что свет плоскополяризован.

Квант света, излученный атомом, поляризован всегда. Однако излучение макроскопического источника света (Солнце, электролампа) является суммой излучений огромного числа атомов, которые излучают свет с различной поляризацией. Такой свет называется неполяризованным. Для выделения из неполяризованного света части, обладающей желаемой поляризацией, используют поляризаторы (кристалл исландского шпата или турмалина, искусственные поляризаторы).

Литература

1. Анисимов В.Н. Видеотерминалы - угроза здоровью/ Природа, 1995, 2

Тема 1.2. Физика возможного

Мир микрообъектов - квантовая физика

Теория относительности Эйнштейна потребовала коренного пересмотра физических представлений о таких фундаментальных понятиях, как пространство и время. Но еще ранее возникли вопросы, касающиеся физической природы излучения и вещества, их сходства и различия, вопросы, относящиеся к внутреннему строению атомов и к происхождению радиоактивности. Попытки ответить на эти вопросы, предпринятые в первые годы нашего века, завершились созданием современной квантовой теории.

В 1897 году английский физик Джозеф Томсон (1856-1940) установил атомистический характер отрицательного электричества. Из своих опытов с катодными лучами он сделал вывод, что они представляют собой поток частиц, которые получили название электронов.

В 1900 году Планк, пытаясь объяснить форму спектра излучения абсолютно черного тела, сделал необычное предположение о том, что обмен энергией между излучением и веществом происходит дискретными порциями, квантами. Большинство физиков восприняло это как “ловкий фокус”, не имеющий серьезных научных оснований. В 1900 году еще придерживались мнения, что все физические процессы протекают непрерывно, и даже сам Планк не шел столь далеко, чтобы предположить квантовую природу всего электромагнитного излучения.

Идея Планка пребывала в забвении в течение нескольких лет. Затем ею воспользовался Эйнштейн для объяснения фотоэффекта и постулировал, что все электромагнитное излучение имеет квантовый характер (состоит из квантов излучения - фотонов). Идея Планка получила признание и в 1918 году ему была присуждена Нобелевская премия.

Волновая природа света была установлена в начале XIX века, когда ряд экспериментов по дифракции и интерференции света ниспроверг конкурировавшую с волновой корпускулярную теорию света. Теория фотоэффекта Эйнштейна снова вызвала к жизни представление о свете, как о потоке частиц. Не означает ли это, что надо отбросит волновую теорию и вернуться к старой корпускулярной? Или же свет играет двойственную роль (то частиц, то волн)? Тогда может быть и электрон, который считали частицей, ведет себя подобно волне?

Ответы на эти вопросы были получены в 20-х годах нашего столетия, когда эксперименты показали, что и свет, и электроны могут обнаруживать свойства как волн, так и частиц. Этот корпускулярно-волновой дуализм был введен в качестве основного принципа в создаваемую в те годы волновую механику, или квантовую теорию.

Разнообразные эксперименты демонстрируют двойственную природу излучения и вещества: электрон распространяется наподобие волны, а свет взаимодействует подобно частицам. Как же описать “частицы света” и “электронные волны”?

Излучение всегда состоит из набора (суперпозиции) волн с разными частотами. Если эти частоты заключены в узкой области около центральной частоты, то интерференция соответствующих волн оказывается конструктивной в одной области пространства и деструктивной во всем остальном пространстве. Такая локализованная группа колебаний называется волновым пакетом. Волновой пакет электромагнитного излучения (т.е. фотон) распространяется как целое со скоростью света. В случае фотона желтого света волновой пакет состоит примерно из 600000 колебаний.

В эксперименте со щелями электроны ведут себя как волны и создают интерференционные эффекты аналогично световым волнам.

Два важных заключения, имеющих решающее значение для развития квантовой теории:

1. Отдельные электроны или фотоны обнаруживают волновое поведение, состоящее в том, что они способны интерферировать сами с собой.

2. Отдельные электроны или фотоны имеют корпускулярное поведение, состоящее в том, что они взаимодействуют с веществом только в дискретных точках; но указать места, где происходят такие взаимодействия в каждом отдельном случае, можно только в вероятностном смысле.

Действительно ли существует дуализм волна-частица? Как понимать тот факт, что электроны и фотоны появляются иногда в облике частиц, а иногда в облике волн? Может быть, это “кентавры” - наполовину волны, а наполовину частицы? А может быть они способны трансформироваться из одного обличья в другое?

Ответ на эти вопросы становится ясен, если четко представить себе, что когда мы описываем поведение электрона или фотона, как поведение частицы или волны, то мы навязываем классическое описание объектам, имеющим существенно неклассическую природу. Электроны и фотоны не подчиняются законам классической механики - их поведение правильно описывается только квантовой механикой. Поэтому нет ничего удивительного, что при использовании классических представлений для описания квантовых объектов возникает некоторая двусмысленность.

Для математического описания процессов взаимодействия электронов и фотонов с веществом вводится величина, которая называется волновой функцией частицы или фотона. Эта функция обычно обозначается буквой пси - j и используется для вычисления вероятности того, что частицу или фотон можно обнаружить (по их взаимодействию с веществом) в данной точке.

В квантовой механике на энергию свободной частицы, движущейся в пространстве, не накладывается никаких ограничений. Такая частица может иметь любую длину волны и любую кинетическую энергию. Зависимость между кинетической энергией и импульсом является квадратичной

В случае свободной частицы нет различий между результатами классической и квантовой механики энергию. Однако если ограничить движение частицы, то обе теории уже не будут приводить к одинаковым результатам.

Рассмотрим движение частицы в ограниченном пространстве между точками x=0 и x=L. Можно представить себе, что частица движется между двумя непроницаемыми стенками, совершая прямолинейное движение то в прямом, то в обратном направлениях. В этом случае никаких ограничений на энергию частицы не существует.

Рассматривая движение квантовой частицы при тех же условиях, мы должны принять во внимание ее волновые свойства. При этом существенно, что волновая функция частицы должна обращаться в нуль при x=0 и x=L, поскольку частица не имеет права покинуть это ограниченное пространство. Это означает, что в “ящике” должны помещаться стоячие волны де Бройля, что возможно при условии, что на длине 2L укладывается целое число длин волн.

Вероятность обнаружить частицу в какой-либо точке внутри “ящика” пропорциональна квадрату пси-функции. В результате внутри “ящика” имеются области, где эта вероятность равна нулю, что противоречит классическим представлениям.

Частица в “ящике” может обладать только определенными значениями энергии. В отличие от классического варианта квантовая частица может иметь на параболе зависимости E от p только отдельные значения (точки).

Второй важный результат состоит в том, что частице запрещено иметь нулевую кинетическую энергию, т.е. частица внутри “ящика” не может находиться в состоянии покоя. Ибо в этом случае частица имела бы равный нулю импульс и, следовательно, бесконечно большую длину волны де Бройля.

Под частицей мы понимаем нечто локализованное в пространстве. Согласно классической теории, частица в каждый данный момент занимает вполне определенное положение и имеет точно определенную скорость движения.

Квантовая теория не может предсказать результат отдельного события, однако она дает с большой точностью средние значения для большого числа событий. В этом и состоит основной смысл принципа неопределенности.

Принцип неопределенности является одним из проявлений корпускулярно-волнового дуализма излучения и вещества. Волну нельзя локализовать в пространстве, и поэтому любое измерение положения объекта, обнаруживающего волновые свойства, принципиально сопряжено с неопределенностью.

Атомы, молекулы, кристаллы

Первую количественную теорию атома разработал в 1913 г. датский физик Нильс Бор (теория атома водорода). Он принял предложенную Резерфордом модель атома с сосредоточенным в центре ядром и внешними электронами. Согласно классической теории такая система может быть устойчивой, если электроны находятся в движении. Таким образом, атом должен быть подобен миниатюрной Солнечной системе, в которой роль Солнца играет ядро, а планет - электроны. Однако согласно классической теории движущиеся электрические заряды должны излучать энергию в виде электромагнитных волн. Расчеты показывали, что электрон в атоме водорода должен излучить всю энергию за ничтожную долю секунды (порядка 10-9 с). Однако в атоме этого не происходит.

Бор предположил, что классическая электромагнитная теория к атому не приложима, что энергия электрона не теряется на излучение, когда он движется по орбите; электрон излучает энергию только тогда, когда он совершает переход между двумя разрешенными орбитами, причем энергия испущенного фотона равна разности энергий электрона на этих орбитах.

Для невозбужденного атома радиус орбиты составляет м. При возбуждении атома электрон перескакивает на одну из более удаленных от ядра орбит. Радиусы возможных орбит описываются формулой

где - постоянная Планка, m - масса электрона, e - заряд электрона, n - главное квантовое число, фиксирующее порядковый номер орбиты электрона.

Таким образом, Бор предположил, что момент импульса электрона квантуется.

Бор подвергся суровой критике за попытку ниспровергнуть господствовавшие в течение столетий классические теории. Сам Бор затруднялся дать надлежащее объяснение фундаментального значения такой странной смеси классической динамики и гипотезы квантования. Прошло более 10 лет, прежде чем развитие новой квантовой механики позволило объяснить замечательные результаты Бора.

К середине 20-х годов стало ясно, что теория строения атома Бора-Зоммерфельда, будучи сплавом как классических, так и квантовых представлений, не может дать полного и удовлетворительного объяснения свойств атомов. В 1925-1926 гг. родился новый взгляд на природу атомных процессов, основанный не на использовании орбит электронов и электронных “прыжков” с одной орбиты на другую, а на описании волновых свойств электронов. Классическое представление об орбитах было отброшено; его заменила волновая механика или квантовая теория элементарных процессов.

В 1925 г. Вернер Гейзенберг и Эрвин Шредингер дали эквивалентные математические описания поведения электрона, а Гаудсмит и Уленбек ввели понятие спина электрона. В следующем году Макс Борн дал вероятностную интерпретацию волновой функции. В 1928 г. Паули сформулировал принцип, позволивший объяснить расположение атомных электронов по оболочкам (в данной электронной системе, в атоме или молекуле, состояния всех электронов различны), Гейзенберг сформулировал принцип неопределенности, а П.А.М.Дирак разработал релятивистскую квантовую теорию.

Эти достижения позволили получить ответ почти на любой вопрос, связанный со строением атомов. По своему значению квантовая теория соизмерима, а может быть и превзошла сформулированный Ньютоном закон всемирного тяготения и объяснение движения планет.

Микрочастица не имеет положения и скорости в макроскопическом смысле этих понятий. Обычные механические величины применимы в микромире с ограничениями. Существо дела состоит в том, что нельзя рассматривать электрон изолированно, вне взаимодействия с другими микрочастицами. Следовательно, нельзя говорить и о траектории электрона в атоме, его орбите.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать