Концепции современного естествознания
p align="left">Галактики - это звездные системы. Число звезд в них порядка . Наша Галактика состоит приблизительно из звезд. Со стороны она представляет собой диск, утолщающийся к центру. Это диск имеет спиральную структуру и вращается с переменной угловой скоростью, большей в центральных областях диска, меньшей на его периферии.

Расстояния в галактиках измеряются в парсеках. Парсек (пс) около см, или 3,2 светового года = 206265 а.е.

Толщина Галактики вблизи Солнца 2000 пс. Диаметр ее диска 30 000 пс. Солнце вместе с его планетной системой находится вблизи края Галактики, приблизительно в 10 000 пс от ее центра.

Кроме звезд в Галактике имеются и другие виды материи (пыль, межзвездный газ, космические лучи. Масса Галактики около кг.

По данным спутника “Прогноз-9”, наша Галактика мчится в направлении созвездий Девы и Льва со скоростью более 500 км/с.

Поскольку размеры звезд невообразимо малы по сравнению с галактическими масштабами, то Галактику можно рассматривать как очень разреженный газ, в котором роль молекул играют звезды. Это газ настолько разрежен, что столкновения между его “молекулами” не происходят. Естественно, он не ограничен (?) стенками какого-либо сосуда. Почему же он не разлетается? Ответ заключается в том, что вся эта система держится силами собственного тяготения.

Средняя плотность материи в Галактике около . Средняя концентрация атомов равна 3 атомам на 1 см3. Сравним: в нормальных условиях в 1 см3 газа содержится 2,6x1019 молекул.

Известная нам часть Вселенной содержит около 1011 галактик. Мир галактик во Вселенной довольно разнообразен. Таких галактик, как наша (спиральных), приблизительно 80%. Встречаются неправильные галактики, имеющие достаточно произвольные геометрические очертания, и эллиптические, близкие по форме к эллипсоидам различной вытянутости.

Число звезд различно: карликовые галактики имеют приблизительно звезд, гигантские - до звезд. Большинство галактик подобно нашей имеет звезд.

Одиночные галактики встречаются редко. Подавляющее большинство их образует скопления, насчитывающие сотни и тысячи членов. Скопления не рассыпаются на отдельные галактики благодаря силам собственного тяготения. Как говорят, они являются гравитационно связанными объектами.

Размеры скоплений галактик исчисляются мегапарсеками (Мпс), т.е. миллионами парсек.

Скопления галактик, в свою очередь, образуют сверхскопления, содержащие десятки членов. Может быть такой процесс будет продолжаться без конца? Оказывается, нет. Согласно данным современных астрономических наблюдений, сверхскопления являются наиболее крупными структурными образованиями в Метагалактике - наблюдаемой части Вселенной.

Галактики, их скопления и свехскопления - это элементы ячеистой структуры Вселенной. Размеры ячеек - сотни мегапарсек, толщина их стенок порядка 2-4 Мпс. Крупные скопления располагаются в узлах ячеек. Сверхскопления представляют собой элементы этой ячеистой структуры.

В масштабах, превышающих тысячи мегапарсек, Вселенная бесструктурна. Более того, можно утверждать, что в таких масштабах она вообще однородна и изотропна, т.е. ее свойства везде одинаковы.

Всегда ли распределение материи во Вселенной было и будет таким, как сейчас? Ответ отрицателен, потому что Вселенная эволюционирует.

Вариационные принципы

Всякая наука стремится свести к минимуму число принципов или законов, лежащих в ее основе. Значение вариационных принципов заключается в том, что каждый из них заменяет несколько частных законов. Например, принцип Ферма эквивалентен отражения и преломления света, принцип наименьшего действия - законам механики.

Открытие вариационных принципов имеет многовековую историю. Герон Александрийский (I в.) сформулировал следующий оптический постулат: ”Скажу, что из всех лучей, падающих из данной точки и отражающихся в данную точку, минимальны те, которые отражаются под равными углами”. (Для сферических зеркал постулат Герона не всегда верен).

В XYII веке знаменитый французский математик П.Ферма сформулировал принцип, представляющий обобщение утверждения Герона: ”свет всегда идет по пути, требующему для своего прохождения минимального времени”.

Вариационные принципы механики ведут начало своей истории с конца XVII в.(И. Бернулли) и первой половины XVIII в. - французский ученый П.Мопертюи выдвинул вариационный принцип механики - принцип наименьшего действия. Согласно этому принципу, “путь, которого свет придерживается, является путем, для которого количество действия будет наименьшим”. Под действием Мопертюи понимал произведение скорости на длину пути.

Л.Эйлер, Ж.Лагранж и У.Гамильтон придали понятию действия содержание, используемое и сейчас. Произведение скорости на длину пути можно преобразовать в произведение квадрата скорости на время, заменив путь произведением скорости на время. Если ввести еще постоянный множитель, равный массе тела, деленной на 2, то получим произведение кинетической энергии на время, что и стало определением действия при отсутствии сил. При наличии сил действие равно среднему значению разности между кинетической и потенциальной энергией, умноженному на время движения. Был создан специальный математический аппарат для решения задач, связанных с применением принципа Ферма, или принципа наименьшего действия. Этот аппарат получил название вариационного исчисления, а соответствующие принципы стали называться вариационными принципами.

Понятие действия приобрело в физике особое значение после введения в 1900 г. немецким физиком М.Планком, основателем квантовой физики, кванта действия, равного фундаментальной постоянной h.

Сопоставление принципов Ферма и Мопертюи натолкнуло французского ученого Л. де Бройля в 1920-х гг. на идею о наличии у частиц вещества волновых свойств, что вскоре было подтверждено на опыте.

Э.Шредингер провел глубокий анализ вариационных принципов оптики и механики и ввел уравнение, носящее его имя.

Значение вариационных принципов заключается в том, что, зная действие и пользуясь этими принципами, можно вывести уравнение движения для любой системы.

Принцип дополнительности

Развитие ньютоновской теории способствовало становлению детерминистского взгляда на природу. Согласно этому мировоззрению, можно определить положения и скорости всех тел в замкнутой системе в какой-то момент времени, и если известны все силы взаимодействия между телами, то можно полностью рассчитать поведение системы в будущем. Иными словами, будущее системы предопределено.

На практике провести такой расчет невозможно. Даже если положение только одного тела в системе определено с малейшей неточностью, в результате взаимодействия этого тела с другими неточность будет расти постепенно по величине, так что по прошествии достаточно длительного времени поведение системы будет существенно отличаться от предсказываемого законами Ньютона.

Однако кроме этой практической трудности, существует еще и другое, принципиальное ограничение, обусловленное квантовой теорией и принципом неопределенности. При этом физикам приходится иметь дело с вероятностями.

В 1927 г. В.Гейзенберг, анализируя возможность измерения координаты и импульса электрона, пришел к заключению, что условия, благоприятные для измерения положения, затрудняют нахождение импульса, и наоборот -эти два понятия дополнительны друг другу.

Соотношение DpxxDx>=h называют соотношением неопределенностей. Иными словами, координата и скорость частицы не могут иметь одновременно строго определенных значений. Указанное обстоятельство ведет к тому, что если в некоторый момент времени известна координата электрона, то уже в следующий как угодно близкий момент времени его координата становится совершенно неопределенной. Мы вынуждены говорить лишь о вероятности нахождения электрона в той или иной точке пространства. Понятие траектории электрона в этих условиях полностью теряет смысл.

Соотношение неопределенностей имеет весьма общее значение и применимо не только к электронам, но и к другим микрообъектам.

Еще одним примером соотношения неопределенностей является связь между неопределенностями в энергии и времени.

Дополнительными являются угловое положение вращающегося тела и его момент количества движения.

Соотношение неопределенностей - частный случай и конкретное выражение общего принципа дополнительности, сформулированного Н.Бором в 1927 (28) году: если в каком-либо эксперименте мы можем наблюдать одну сторону физического явления, то одновременно мы лишены возможности наблюдать дополнительную к первой сторону явления.

Принцип дополнительности Бор применял во многих областях. Так, например, физическая картина явления и его математическое описание дополнительны. Создание физической картины требует пренебрежения деталями и уводит от математической точности, а попытка точного математического описания затрудняет его ясное понимание.

Квантовая механика не дает однозначного ответа на некоторые вопросы, а лишь предсказывает вероятность того или иного результата.

Принципиальная неопределенность некоторых величин есть следствие применения классических понятий к описанию неклассических объектов.

Принципы симметрии и законы сохранения

Обычно под термином “симметрия” понимают либо зеркальную симметрию (левое - правое), либо центральную.

В физике под этим термином понимают неизменность не только предметов, но и физических явлений, и не только при отражении, но и вообще при какой-либо операции - при переносе установки из одного места в другое или при изменении момента отсчета времени.

Самая простая симметрия - однородность и изотропность (эквивалентность всех направлений) пространства. Она означает, что любой физический прибор - часы, телевизор, телефон - должен работать одинаково в разных точках пространства, если не изменяются окружающие физические условия. То же самое относится и к повороту прибора, если отвлечься от силы тяжести, которая выделяет на поверхности Земли вертикальное направление.

Физические законы должны быть инвариантны (неизменны) относительно перемещений и поворотов.

Еще одна важная симметрия - однородность времени. Все физические процессы протекают одинаково, когда бы они ни начались.

Законы природы не изменяются и от замены направления течения времени на обратное (разбивающееся яйцо! и молекулы в малом объеме газа).

Симметрия, связанная с изменением направления течения времени, приближенная: ее нарушение наблюдается в слабых распадах некоторых элементарных частиц - нейтральных К-мезонов.

Зеркальная симметрия (волчок, закрученный направо, ведет себя так же, как волчок, закрученный налево) явлений природы неточная, как и большинство других симметрий. В слабых взаимодействиях, ответственных за радиоактивный распад, она нарушается.

Из определенных принципов симметрии выводятся некоторые из законов сохранения.

Прямым следствием симметрии относительно переноса в пространстве является закон сохранения импульса (количества движения).

Импульсом, или количеством движения тела, называют произведение его массы на вектор скорости: p = mv. Для замкнутой системы величина полного импульса P сохраняется. Закон сохранения импульса связан с фундаментальным свойством пространства - однородностью, т.е. равноправием всех точек пространства.

Прямым следствием симметрии относительно вращения является закон сохранения момента импульса.

Прямым следствием симметрии относительно переноса во времени является закон сохранения энергии.

Закон сохранения энергии был точно проверен не только для перехода механической энергии в тепловую, но и для перехода в химическую и электромагнитную, а также для перехода электрической или химической в тепловую.

Закон сохранения энергии является строгим следствием равномерности хода времени. Ход времени определяется относительной скоростью протекания различных процессов в природе. Любое измерение интервала времени означает сравнение ритмов разных процессов. Равномерность хода времени означает, что всегда относительная скорость протекания всех процессов в природе одинакова. Равномерность хода времени установлена на примере излучения атомов. Атомы на звезде излучают свет такой же длины волны, как и атомы сегодняшнего дня, даже если свет был излучен миллиард лет тому назад.

Закон сохранения вещества (массы) после того, как была установлена связь массы с энергией, превратился в закон сохранения энергии.

Важнейшее следствие симметрии состоит в том, что каждой симметрии, как внутренней, так и пространственной, соответствует свой закон сохранения.

Существует еще один закон сохранения: полное число тяжелых частиц (протонов и нейтронов) остается неизменным в природе.

Литература

1. Адлер С.Л. А.Д.Сахаров и индуцированная гравитация/ Природа,1990,8

2. Барабаш А.С. Двойной b-распад и его поиски/ Природа, 1995, 2

3. Бергстром Л., Рубинштейн Г. AMANDA на Южном полюсе: антарктические нейтрино/ Природа, 1996, 11

4. Бисноватый-Коган Г.С. Пульсары - новые открытия и проблемы/ Природа, 1995, 2

5. Бисноватый-Коган Г.С. Порядок и беспорядок в астрофизике. Природа,

6. 1996, 6

7. Варшалович Д.А., Потехин А.Ю. Спектроскопия квазаров и космология/Природа, 1995, 4

8. Гордеев В.А., Кутень С.А. Круглый ли атом водорода?/ Природа,1990,3

9. Горелик Г.Е. О сохранности законов сохранения/ Природа, 1992, 7

10. Далькаров О.Д., Воронин А.Ю. Исследование антиматерии - реальность и перспективы. Природа, 1994, 12

11. Комар А.А. Нейтрино с массой 17 кэВ?/ Природа, 1991, 8

12. Комар А.А. Зарницы суперсимметрии/ Природа, 1992, 5

13. Комар А.А. Проект AMANDA/ Природа, 1996, 11

14. Кулакова Н.В. Уточняется постоянная Хаббла/ Природа, 1995, 10

15. Мирабель И.Ф. “Великий аннигилятор” в центральной области галактики. Природа, 1993, 6

16. Морозов А.Ю. Теория струн и фундаментальные взаимодействия/ Природа, 1990, 1

17. Печерникова Г.В. Проблема образования дальних планет/ Природа, 1992, 9

18. Рубченя В.А., Явшиц С.Г. Тройное деление тяжелых ядер/ Природа, 1991,5

19. Сахаров А.Д. Симметрия Вселенной/ Природа, 1990, 8

20. Смирнов А.Ю. Резонансные переходы нейтрино в веществе/ Природа, 1991,6

21. Сонин А.С. Грустная судьба великого открытия (о Фридмане). Природа,

22. 1993, 5

23. Судьба космогонических идей О.Ю.Шмидта/ Природа, 1991, 9

24. Цыган А.И. Электрические поля нейтронных звезд. Природа, 1994, 8

Тема 1.4. От физики существующего к физике возникающего

Современная физическая картина мира

Картина мира, которую начали создавать Галилей и Ньютон, а завершали Фарадей, Максвелл и Эйнштейн, отражала философские воззрения, которые брали начало еще от древних: природа не делает скачков. Эти представления основывались на непрерывности процессов.

Это мнение изменила квантовая теория, согласно которой вещество при излучении испускает энергию конечными порциями - квантами. Энергия кванта равна произведению постоянной Планка на частоту излучения.

Луи де Бройль писал: ”День, когда была введена постоянная Планка, остается одной из замечательных дат в истории человеческой мысли”.

С постоянной Планка вошло в науку представление о дискретности энергии в микромире; постоянная Планка оказалась связанной с понятием о строении атома.

Каково строение атома? Известно, что на основе экспериментальных данных Резерфордом была создана планетарная модель атома. Это была последняя наглядная его модель. Предложенная Резерфордом модель была катастрофой для классической физики.

Согласно представлениям электродинамики Максвелла, движущийся вокруг ядра электрон должен излучать энергию и поэтому очень быстро упасть на ядро. Получалось, что с признанием модели атома Резерфорда следует пересмотреть классическую электродинамику, которая уже стала основой электромагнитной картины мира. Резерфорд понимал, что “его” атом обречен.

Но в 1913 году Резерфорду пришел пакет от молодого Нильса Бора с наброском его первой работы по квантовой теории строения атома. В этой статье Бор писал:”...существование мира постоянно доказывает, что атом - устойчивая система. Значит, электроны, вращаясь вокруг ядра, вопреки

Максвеллу-Лоренцу, не излучают непрерывно. Так, если это не происходит и они, обессиленные не падают на ядро, не проще ли предположить, что в атоме есть пути, на которых электроны не растрачивают энергию: стационарные орбиты! Только покидая такую орбиту, электрон начинает излучать...” По существу в этих словах выражено содержание знаменитых постулатов Бора, от которых и началась квантовая механика - новая физика.

Бор считал, что электрон, как и микрочастица в классической физике, движется по определенному пути. Эти пути - стационарные орбиты - Бор определял при помощи главных квантовых чисел. Атом может излучать энергию только тогда, когда электрон перескакивает с одной орбиты на другую, причем эта энергия излучается в виде кванта.

Теория строения атома, созданная Резерфордом и Бором, позволила объяснить многие факты, но возникло так много новых вопросов, на которые, как казалось физикам, невозможно было ответить. Эйнштейн писал: ”Это было так, точно из-под ног ушла земля и нигде не было видно твердой почвы, на которой можно было строить...”

Ответ физики нашли, но для этого пришлось отказаться от прежних представлений о микропроцессах. В механической и электромагнитной картинах мира микрочастицы представлялись неизменными, их скорость, координату, энергию можно было определить абсолютно точно в любой заданный момент времени. В современной картине мира совершенно другой взгляд и на сами микрочастицы, и на их поведение.

Французский физик Луи де Бройль в 1924 г. предложил рассматривать дискретные состояния электрона в атоме как волновые явления. Это давало возможность объяснить, почему электрон при своем движении вокруг ядра не излучает энергию (стоячая волна не излучает и не поглощает энергию). Вскоре была открыта дифракция электронов, что подтвердило наличие у них волновых свойств.

Математическое обоснование волновой модели атома дал австрийский физик Эрвин Шредингер. Решение составленного им для описания движения микрочастиц уравнения дает значения величины, известной в физике под названием пси-функции или волновой функции. Эта функция описывает движение электрона. Это движение не подчиняется законам механики Ньютона: если бы мы создали двум электронам абсолютно одинаковые начальные условия, то дальнейшее их движение могло бы быть совершенно различным, чего законы механики не допускают.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать