Концепции современного естествознания
p align="left">Дальше начинается область гипотез. Согласно большинству из них, электрослабые взаимодействия объединяются с сильными на масштабе см. Трудно представить себе эксперименты на таких малых масштабах. Однако решающий эксперимент для проверки этого, так называемого Великого объединения может быть проведен в ближайшие годы. Дело в том, что почти неизбежным следствием Великого объединения является нестабильность протона. Это процесс, при котором в нуклонах происходят превращения кварков в антикварки и лептоны.

Вероятности таких превращений очень малы, иначе просто не существовали бы ни мы сами, ни окружающая нас ядерная материя - она бы рассыпалась на более легкие частицы. По теоретическим оценкам время жизни протона должно составлять лет. Это намного больше, чем возраст Вселенной. Но даже такие крайне редкие события можно попытаться обнаружить.

Другое вероятное следствие Великого объединения - это существование монополей, одиночных магнитных зарядов. Их масса должна быть фантастически велика. Опыты по обнаружению космических монополей сейчас ведутся.

Эйнштейн предполагал возможность объединения электромагнитного взаимодействия с гравитационным. Теперь это будет Суперобъединение - все четыре силы природы сводятся к одной, исходя из какого-то фундаментального принципа. В последнее время все чаще высказывается мысль, что этот принцип геометрический, как и принцип общей теории относительности.

Протон. Стабильная частица, ядро атома водорода. Вместе с нейтронами протоны образуют атомные ядра всех элементов, причем число протонов в ядре определяет атомный номер элемента. Протон имеет положительный электрический заряд в точности равный абсолютной величине заряда электрона. Протон в 1836 раз тяжелее электрона. С современной точки зрения протон не является истинно элементарной частицей: он состоит из трех кварков. Эксперименты по рассеянию электронов на протонах свидетельствуют о наличии внутри протонов точечных рассеивающих центров. Размеры протона около см. Протон напоминает облако с размытой границей, состоящее из рождающихся и аннигилирующих виртуальных частиц. Время жизни протона лет, что во много раз больше возраста Вселенной (лет). Поэтому протон практически стабилен, что сделало возможным образование химических элементов и в конечном итоге появление разумной жизни.

Нейтрон. Вместе с протонами нейтроны входят в состав атомных ядер. Электрический заряд равен нулю. Состоит из трех кварков. Устойчив лишь в составе стабильных атомных ядер. Свободный нейтрон - нестабильная частица, распадающаяся на протон, электрон и электронное антинейтрино. Время жизни нейтрона около 15 мин. Они возникают в природе или получаются в лаборатории в результате ядерных реакций. Масса нейтрона 1840. Свободные нейтроны способны активно взаимодействовать с атомными ядрами, вызывая ядерные реакции. Они играют важную роль в ядерной энергетике.

Кварки вначале рассматривались как чисто математические структурные элементы, открывающие возможность удобного описания адронов. Эксперименты выявили наличие внутри нуклона точечных заряженных образований, которые отождествили с кварками.

Название было заимствовано М.Гелл-Маном в одном из романов Дж. Джойса. В переводе с немецкого “кварк” - “творог”, но в романе это слово означает нечто двусмысленное и таинственное; герою снится сон, где чайки кричат: ”Три кварка для мистера Марка”. Термин вошел в научный обиход, возможно, потому, что соответствовал двусмысленной и таинственной роли кварков в физике.

Кварк - частица со спином 1/2 и дробным электрическим зарядом. Помимо спина кварки имеют еще две внутренние степени свободы - “аромат” и “цвет”. Каждый кварк может находиться в одном из трех “цветовых” состояний, которые условно называют “красным”, “синим” и “желтым”. Все три состояния одинаково поглощают и испускают кванты света. Массы всех цветовых состояний также строго одинаковы.

“Ароматов” известно пять и предполагается существование шестого: truth, beauty, charmed, strange, down, up (правдивый или истинный, прелестный или красивый, очарованный, странный, низ, верх). Свойства кварков с различными “ароматами” различны.

Каждый кварк может быть окрашен в любой из трех цветов, иметь по два спиновых состояния +1/2 и по два зарядовых состояния. Это дает 6x3x2x2, т.е. 72 варианта.

Обычное вещество состоит из легчайших u- и d-кварков, входящих в состав нуклонов ядер. Более тяжелые кварки рождаются искусственно.

Кварки участвуют во всех известных взаимодействиях - гравитационных, слабых, электромагнитных и сильных. Неизвестно, из чего состоят сами кварки; возможно, они элементарны. Их собственный размер, во всяком случае, меньше .

В свободном состоянии кварки до сих не наблюдались, и есть теоретические соображения, которые указывают на невозможность таких состояний для кварков.

Лептоны - частицы, не участвующие в сильном взаимодействии. Лептоны как и кварки, рассматривают как бесструктурные точечные частицы, как истинно элементарные.

Электрон - отрицательно заряженная элементарная частица, носитель наименьшей известной сейчас массы, и наименьшего электрического заряда в природе. Заряд электрона примерно равен Масса электрона примерно

Электрон стабилен, время его жизни не менее лет. Электроны участвуют в электромагнитных, слабых и гравитационных взаимодействиях.

Нейтрино - электрически нейтральная частица. Вероятно существует не более 4-6 типов нейтрино. Масса покоя нейтрино обычно считается равной нулю, как у фотона. Но в отличие от фотона для этого нет серьезных оснований. Японские и американские физики определили массу покоя электронного нейтрино в пределах 11 - 13,4 эВ/с2.

Нейтрино столь же распространенная частица как и фотон. Нейтрино образуется в слабых распадах атомных ядер и элементарных частиц. Мощные потоки нейтрино испускаются звездами в результате происходящих в их недрах термоядерных реакций. Предполагается, что нейтрино в изобилии рождаются при гравитационном коллапсе звезд. Наконец, все пространство заполнено нейтринным газом, оставшимся от ранних этапов развития Вселенной.

К частицам - переносчикам взаимодействий относятся: глюоны, фотоны и массивные промежуточные бозоны.

Взаимодействия элементарных частиц представляются как своеобразная игра в мячики: перебросом глюонами осуществляется связь между кварками, обмен фотонами происходит в актах взаимодействия электрически заряженных частиц, массивные промежуточные бозоны ответственны за медленные распады частиц и за чрезвычайно слабое взаимодействие всех типов нейтрино с веществом.

Фотон - квант электромагнитного поля, элементарная частица с нулевой массой покоя и спином, равным единице. Масса покоя, равная нулю, означает, что фотон невозможно ни остановить, ни замедлить. Независимо от своей энергии он обречен двигаться с фундаментальной скоростью c.

Фотон - наиболее распространенная из всех элементарных частиц. Он встречается и в потоках видимого света, и в рентгеновском излучении, и в виде радиоволн, и в лазерных импульсах.

В 1964 г. американские радиоастрономы А.Пензиас и Р.Вильсон обнаружили, что мировое пространство заполнено миллиметровыми радиоволнами, которые можно рассматривать как холодный фотонный газ при температуре 2,7 K. По современным представлениям, это излучение (его называют реликтовым) возникло на ранних стадиях развития Вселенной. Средняя плотность реликтовых фотонов составляет около 500 в 1 см3. Интересно, что плотность протонов во Вселенной в среднем не более одного на 1 м3. Таким образом, во Вселенной фотоны встречаются в миллиард раз чаще, чем протоны.

Античастицы. К настоящему времени экспериментально обнаружены античастицы почти всех элементарных частиц. Частица и соответствующая античастица имеют одинаковые времена жизни, одинаковые массы, их электрические заряды равны, но противоположны по знаку. Самым характерным свойством пары частица-античастица является способность аннигилировать (самоуничтожаться) при встрече с превращением в частицы другого рода.

Античастицы могут собираться в антивещество. Так в Серпухове на ускорителе получен антигелий-3, у которого ядро состоит из двух антипротонов и одного антинейтрона и окружено оболочкой из пары позитронов.

Частицы и соответствующие им античастицы одинаково взаимодействуют с полем тяготения; это указывает на отсутствие “антигравитации”.

Несмотря на микроскопическую симметрию между частицами и античастицами, во Вселенной до сих пор не обнаружены области со сколько-нибудь заметным содержанием антивещества. Свидетельством присутствия антивещества во Вселенной было бы мощное аннигиляционное излучение, приходящее из областей соприкосновения вещества с антивеществом. Ведь аннигиляция только 1 г вещества и антивещества приводит к выделению Дж энергии, что эквивалентно взрыву средней атомной бомбы в 10 килотонн.

Вселенная в основном состоит из обычного вещества. Но так было не всегда. На ранней стадии развития Вселенной при очень больших температурах количество частиц и античастиц совпадало: на большое количество антипротонов (примерно на каждые несколько миллиардов) приходилось столько же протонов и еще один “лишний” протон. В дальнейшем при остывании Вселенной все частица и античастицы проаннигилировали, породив в конечном итоге фотоны, а из ничтожного избытка частиц возникло все, что нас теперь окружает.

Идея о возникновении во Вселенной асимметрии между частицами и античастицами впервые была высказана А.Д.Сахаровым.

Ядра. Атомные ядра представляют собой связанные системы протонов и нейтронов (нуклонов). Массы ядер всегда несколько меньше суммы масс свободных нуклонов, составляющих ядро. Это релятивистский эффект, определяющий энергию связи ядра.

В отличие от массы электрические заряды ядер строго равны сумме зарядов, входящих в ядро протонов. Известны ядра с зарядом от 1e до 107e и с числом нуклонов от 1 до примерно 260. Особенно устойчивыми ядрами являются ядра с числами протонов или нейтронов 2, 8, 20, 28, 50, 82, 126, получившими название магических.

Плотность массы ядер Радиусы ядер от (ядро гелия) до (ядро урана). Периоды полураспадов изменяются в пределах от лет до с.

Физический вакуум как реальность

Физика микромира описывается квантовой механикой и теорией относительности, и эти две теории не допускают существования пустоты. Если откачивать воздух из замкнутого сосуда, то в принципе можно удалить все вещество, но при этом все-таки не получится классической пустоты.

Что же останется в “пустом” сосуде? В вакууме имеются квантовые флуктуации полей и виртуально рождаются частицы.

Вакуум - это состояние с наименьшей энергией при отсутствии вещества. Но отсутствие вещества еще не означает отсутствия частиц. Как известно, число частиц не сохраняется в реакциях. Сохраняются энергия, электрический, барионный и лептонный заряды, но число частиц может меняться.

Если приложить достаточно энергии, из вакуума можно рождать частицы. Дело в том, что энергия может переходить в поле, а поле - в частицы.

Ну а если не прикладывать энергии и рассматривать свойства чистого вакуума? Казалось бы, эти свойства никак не связаны со свойствами частиц, рождающихся из вакуума в присутствии источников энергии. Так было бы в классической механике, но в квантовой механике это не так. Известное соотношение неопределенностей приводит к тому, что на короткое время любая система может перейти в состояние, отличающее на дельта E по энергии.

Такие переходы называются виртуальными. Так как по теории относительности энергия может переходить в массу, то виртуальные переходы соответствуют рождению частиц на короткое время. Например для протона это время равно около с.

В атомной физике эффекты, вызываемые виртуальными частицами, довольно незначительны. Однако чем более мелкие частицы рассматриваются, тем большую роль играет окружающий их вакуум со своими виртуальными частицами. Например, в ядерном веществе протоны имеют меньшую массу, чем в вакууме, где к этой массе добавляется масса “налипших” виртуальных пи-мезонов.

На уровне кварков свойства вакуума уже играют решающую роль. Невозможность существования свободных кварков, по всей вероятности, связана именно с колоссальными изменениями, которые одиночный кварк вызывает в вакууме.

На свехмалых расстояниях свойства вакуума еще более загадочны. Неожиданно возникает связь квантовых эффектов с гравитационными. Сверхтяжелые виртуальные частицы создают вокруг себя заметное гравитационное поле, которое начинает искажать геометрию пространства. Но пока еще невозможно представить себе какие бы то ни было эксперименты при очень больших энергиях и в столь малых масштабах пространства.

Макромир

При определенных условиях однотипные атомы или молекулы могут собираться в огромные совокупности - макроскопические тела (вещество). Простое вещество является атомарным, сложное - молекулярным.

При достаточно низких температурах все тела являются кристаллическими. В кристаллах взаимное расположение атомов является правильным. Для них характерно равновесное положение в узлах кристаллической решетки. Их движение сводится к колебаниям вблизи этих узлов.

Геометрия кристаллического состояния отличается необычайным разнообразием, но число типов решеток ограничено. Свойства веществ определяются не только характером атомов, но и их взаимным расположением (графит и алмаз). Тела могут сильно различаться в отношении механических, тепловых, электрических, магнитных и оптических свойств.

Подавляющее большинство твердых тел имеет кристаллическое строение. Даже глина состоит из маленьких кристалликов. Свойства твердого тела зависят от строения кристаллического зерна, размера кристалликов, их взаимного расположения и силы, сцепляющей их в единое тело.

Общий порядок в расположении кристаллических зерен называется текстурой. Наличие текстуры очень сильно влияет на механические свойства изделия.

Аморфные твердые тела противопоставляются кристаллам и по некоторым свойствам они скорее должны быть причислены к жидкостям, нежели к твердым телам. Аморфное тело типа стекла содержит признаки как твердого, так и жидкого тела: расположение атомов обладает лишь ближним порядком, но атом в своем движении остается в неизменном окружении - соседи не обмениваются местами.

К аморфным телам относится большое число органических веществ, например, пластмассы, органические стекла.

“Жидкие кристаллы” или жидкое твердое тело - к этому обширному классу веществ относятся многие органические и биоорганические вещества. Такое состояние наблюдается в определенном интервале температур. Если нагреть жидкий кристалл, он превратится в обычную жидкость, если охладить - станет кристаллом.

Эти вещества сочетают в себе свойства жидкости и кристалла. Обнаружены два типа жидких кристаллов: в первом расположение молекул обладает ближним порядком, однако все молекулы располагаются параллельно друг другу; во втором - молекулы располагаются слоями.

Мыло, растворенное в воде, образует жидкие кристаллы, с чем связаны его моющие свойства. Мыльный раствор состоит из большого числа двойных слоев молекул.

При повышении температуры происходит фазовый переход кристалл-жидкость (плавление). Каждое вещество имеет свою строго определенную температуру плавления.

В жидком состоянии атомы уже не являются строго локализованными. Тепловое движение в жидкостях носит довольно сложный характер.

Молекулы жидкости совершают в основном колебательные движения, положения равновесия не строго фиксированы, но молекула остается в окружении все тех же соседей. Легкость, с которой молекула может менять своих соседей, связана с вязкостью.

При переходе жидкости в пар (испарение) при атмосферном давлении вещество практически полностью теряет свою индивидуальность. Это связано с малой плотностью газообразного вещества. В разреженных газах по существу отсутствует взаимное влияние атомов, а значит, не проявляется их индивидуальная атомная структура. Газы всех веществ (при нормальных условиях) с хорошей точностью подчиняются одинаковым закономерностям.

Дальнейшее повышение температуры ведет к ионизации атомов, т.е. распаду их на ионы и свободные электроны. Такое состояние вещества называют плазменным.

Поскольку ионы и электроны в отличие от атомов несут не скомпенсированные электрические заряды, их взаимное влияние становится существенным. Плазма в противовес газам может проявлять коллективные свойства, что сближает ее с конденсированным состоянием, т.е. с твердыми телами и жидкостями.

Макротела астрономического масштаба - планеты. Масса Земли приблизительно г, радиус - 6400 км, средняя плотность 5,5 г/см3. В недрах планет вещество находится под высоким давлением. При сжатии вещества проявляется тенденция “сглаживания” его свойств. Наружные электронные оболочки атомов, ответственные за “индивидуальность”, при давлениях атм перестают существовать, ибо входящие в их состав электроны отрываются от атомов и становятся коллективными.

Земля - планета жидкая. Это утверждение звучит парадоксально, поскольку течения вещества Земли почти незаметны для нас. Они, однако, существуют, их скорость составляет несколько см в год. В результате за 0,5 млрд. лет земная поверхность меняется очень существенно.

По настоящему твердой является только тонкая (20-40 км) оболочка -кора Земли. Вещество на глубинах от 40 до 400 км способно течь под влиянием высоких температур и давлений.

Мантией называют весь слой глубиной от 40 до 2920 км, где температура недр повышается примерно до 4,5 тыс. градусов. Ниже мантии вещество находится в расплавленном состоянии. Это жидкое ядро Земли радиусом 3450 км. Наконец, в самом центре Земли есть еще внутреннее твердое ядро радиусом 1250 км, состоящее из вещества с плотностью около 13 г/см3.

Кора Земли, называемая литосферой, состоит из отдельных плит, медленно перемещающихся друг относительно друга. Новая земная кора образуется в районах срединно-океанических хребтов, а старая кора, покрытая трехкилометровым слоем осадков, исчезает, ныряя под континенты.

Взаимные перемещения плит, рождение и разрушение твердой коры Земли сопровождаются землетрясениями. Когда погружающаяся литосферная плита попадает в зону высоких температур, происходят химические реакции, преобразующие ее осадочный слой. При этом образуются газы и водяные пары, которые вулканами извергаются в атмосферу, и возможно, что органическое вещество осадков частично переходит в нефть.

Именно вулканическая деятельность привела к появлению первичной атмосферы Земли, а вода, образовавшаяся при дифференциации вещества мантии, составила Мировой океан.

Мегамир Звезды. Галактики. Вселенная

Солнце: масса г, радиус км, средняя плотность , находится от Земли на расстоянии около см, которое свет проходит за 499 с - это расстояние называют астрономической единицей а.е. Самая далекая от Солнца планета Плутон находится от него на расстоянии около 39,75 а.е.

Центральные области Солнца имеют температуру около K и давление около атм. В этих условиях вещество является полностью ионизованной плазмой: голые ядра и свободные электроны. При этом становятся возможными термоядерные реакции (слияние ядер водорода и превращение их в ядра гелия), которые служат источником энергии звезд. Масса Солнца 1030 кг.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать