Обобщения при обучении решению математических задач
p align="left">Пример 8. Клоун на ходулях хочет показать мастер - класс и обойти всю арену по краям за 5 шагов и вернуться в исходное место, при этом для красоты шаги должны быть одинаковы. Помогите клоуну, указав ему путь по арене.

Пример 9. 5 спасателей натягивают батут круглой формы для спасения человека. Как лучше спасателям держать батут, чтобы натяжение было наилучшим.

Сравнение и анализ геометрических моделей этих задач приводят к выводу: задачи, несмотря на различие формулировок, имеют одинаковые геометрические модели.

Абстрагируясь от конкретных фабул задач, формулируют обобщенную задачу: в окружность вписать правильный пятиугольник.

Понять, что для решения задачи необходимо только вписать правильный пятиугольник в окружность, мы смогли тогда, когда построили геометрическую модель задачи. Решение обобщенной задачи позволяет так же решать все задачи такого типа.

Обобщение применимо при переходе от конкретных задач к общим моделям их решения, а затем к методу решения класса аналогичных задач.

Пример 10: изучение пропорциональных зависимостей величин в 7 классе: скорость, время, расстояние (); цена, количество товара, стоимость (); производительность труда, время работы, объем работы (). В основном, в сознании учащихся все эти задачи укладываются независимо друг от друга. В каждой задаче ее содержанию соответствует определенная группа величин, находящихся между собою в функциональной зависимости. Если абстрагироваться от конкретного содержания задач, то легко заметить, что во всех рассмотренных случаях задачные ситуации описываются с помощью двух функций: . Это и есть простейшие математические модели прямой и обратной пропорциональности. Таким образом, задачи на различные прямо пропорциональные зависимости решаются с использованием модели у = к*х, а обратно пропорциональные - применением модели » [20].

Так же распространено обобщение решения различных конкретных задач до метода решения класса задач.

Пример 11. Введение метода построения вспомогательных треугольников, который позволяет на протяжении изучения всего курса геометрии решать многие задачи на построение единым подходом, хотя они могут быть и различного содержания.

Суть метода - построение вспомогательных треугольников и использование их свойств и вновь полученных элементов для окончательного решения задачи [18].

Данные удобно представить в виде таблицы. [Приложение 8]

На анализе построение трех задач можно вывести общий метод построения всех задач такого класса, который записывается в последний столбец таблицы. При таком подходе учащиеся четко различают этапы метода.

2.1.2 Обобщение методов решения задач

При изучении методов решения математических задач индуктивные обобщения могут осуществляться следующим образом:

1) обобщение и систематизация способов решения конкретных задач до методов решения класса задач;

2) обобщение и систематизация методов решения класса задач.

Для систематизации знаний учащихся, приобретенных при решении конкретных задач, полезно делать обобщения решений до метода решения класса задач.

Пример 12: обобщение и систематизация методов решения задач о длине окружности и площади круга.

После решения ряда задач с применением формул длины окружности и площади круга в 9 классе на уроке геометрии можно провести с учащимися обобщающую беседу.

Основными при изучении темы «длина окружности и площадь круга» являются шесть объектов: R - радиус, С - длина окружности, S - площадь круга, угол с градусной мерой, L - длина дуги, Sc - площадь сектора.

В беседе следует отметить, что формула длины дуги это обобщенный случай формулы длины окружности, то есть когда угол равен 3600. Аналогичное обобщение можно провести и с формулой площади круга до формулы площади сектора. Тогда количество объектов уменьшится с шести до четырех и можно рассмотреть два основных соотношения между ними:

, .

Если заданы два компонента из четырех, то две оставшиеся могут быть вычислены. Таким образом, возможные типы задач определяются данными: 1) L, ; 2) S, , 3) R, , 4) L, R, 5) S, R, 6) S, L.

Если же речь идет о длине окружности и площади круга, то количество типов задач уменьшается. Целесообразно провести специализацию и рассмотреть этот случай. Обобщение показывает взаимосвязь нахождения длины окружности и длины дуги окружности, площади круга и площади сектора, так как такие громоздкие формулы плохо запоминаются учащимися.

Такие обобщения позволяют выявить связи изучаемого с изученным ранее и сформировать как общие методы решения классов задач, так и систему методов решения задач.

Индуктивные обобщения методов решений задач, а так же их систематизация приводят к формированию системы советов решающему математическую задачу.

2.1.3 Обобщение способов поиска решения многих задач до системы советов

В процессе решения задачи деятельность учащегося направлена на понимание задачи, осуществление поиска ее решения. Таким образом, она направлена на осознание, систематизацию и выяснение той информации, которая является явной в задаче.

Советы при решении различных задач должны обладать общностью, должны быть естественны и просты.

Все советы можно разделить на четыре группы, которые соответствуют четырем этапам решения задачи: усвоение содержания задачи; составление плана решения задачи; реализация плана решения задачи; анализ и проверка правильности решения [30]. На первом этапе деятельности целью является достижения осознанного понимания словесной формулировки задачи. Взгляд на один и тот же факт или объект задачи с различных сторон помогает оценить связь объекта задачи с другими данными или внешней информацией. На втором этапе должны быть установлены связи различных объектов в задаче и выявлена связь с внешней информацией, с ранее приобретенным опытом. Учащийся должен внимательно, многократно и с разных сторон рассмотреть все компоненты задачи, их внутренние и внешние связи и осуществить составление плана решения задачи. На третьем этапе осуществляется сам план решения задачи, на четвертом - исследование полученного решения.

Такие этапы помогают направить ход мыслей в нужном направлении для достижения поставленной в задаче цели. Рассмотрим подробно систему советов, например, для составления плана решения задачи.

Это второй этап решения задачи, наступает, когда ученик вник в содержание задачи, ввел все обозначения, по необходимости сделал чертеж.

Для составления верного плана решения задачи необходима подготовка.

А). Для начала следует выяснить, известна ли какая-либо родственная задача? Аналогичная задача?

Пример 12. За одно и то же время велосипедист проехал 4 км, а мотоциклист - 10 км. Скорость мотоциклиста на 18 км/ч больше скорости велосипедиста. Найдите скорость велосипедиста.

Пример 13. Лодка за одно и то же время может проплыть 36 км по течению реки или 20 км против течения. Найдите собственную скорость лодки, если скорость течения реки 2 км[17].

Задачи аналогичны по плану решения. В обеих для решения необходимо составить отношения расстояний к скоростям и приравнять. Общая формула выглядит следующим образом: . Если при решении задач, одна уже была рассмотрена ранее, то другая может быть решена по аналогии.

Б). Подумать, известна ли задача, к которой можно свести решаемую?

Пример 14. Отрезки, концами которых служат внутренние точки противоположных сторон квадрата, перпендикулярны. Докажите, что эти отрезки равны [38].

Решение задачи упрощается, если заданная пара взаимно перпендикулярных прямых будет проходить через центр квадрата. Доказав равенство отрезков в этом случае, основная задача легко решается использованием признаков параллельности и определения квадрата. Таким образом задачу можно свести к следующей: Отрезки, концами которых служат внутренние точки противоположных сторон квадрата, перпендикулярны и пересекаются в центре квадрата. Докажите, что эти отрезки равны.

В). Если родственная задача неизвестна и свести данную задачу к какой-либо известной задаче не удается, то стоит воспользоваться советом: «Попытайтесь сформулировать задачу иначе». При переформулировании задачи либо пользуются определениями данных в ней математических понятий (заменяют термины их определениями), либо их признаками (точнее сказать, достаточными условиями).

Пример 15. Найти периметр правильного шестиугольника A1A2A3A4A5A6, если A1A4 = 2,24 см [1, №1131].

Для быстрого и более легкого нахождения плана

решения данной задачи, удобно к понятию «правильный

шестиугольник» добавить определяющий признак, что

«в правильном шестиугольнике».

Тогда задача примет вид: Найти периметр правильного шестиугольника

A1A2A3A4A5A6, в котором отрезки, соединяющие его центр с вершинами равны сторонам правильного шестиугольника, если A1A4 = 2,24 см.

Тогда, глядя на рисунок 1, становится ясен план решения задачи.

Г). Так же, составляя план решения задачи, следует задать себе вопрос: «все ли данные задачи использованы?» Выявление неучтенных данных задачи облегчает составление плана ее решения. Возможно, имеются «скрытые» данные.

Пример 16. Найти диагональ прямоугольного параллелепипеда, длина а, ширина b, высота h которого известны [30].

Так может случиться, что ученик, зная теорему Пифагора, найдет диагональ грани: . Далее самостоятельное решение задачи будет для него уже затруднительно, тогда учитель, задав вопрос «все ли данные задачи использованы?», может помочь ученику в отыскании верного пути решения задачи.

Д). Иногда полезно следовать совету «Попытайтесь преобразовать искомые или данные». При этом данные преобразуют так, чтобы они приблизились к искомым.

Пример 17. Постройте треугольник, равновеликий данному четырехугольнику [38].

При отыскании решения данной задачи следует для начала преобразовать четырехугольник до параллелограмма, так как формулы площадей треугольника и параллелограмма сходны между собой.

Е). Если следуя предыдущим советам, вам не удалось составить план решения, то можно воспользоваться таким советом: «попробуйте решить лишь часть задачи», т.е. попробуйте удовлетворить лишь части условий, с тем, чтобы далее искать способ удовлетворить оставшейся части условий задачи. Этот совет можно расширить, развить до совета: «Расчлените задачу на более простые задачи».

72

Пример 18. В треугольнике ABC медианы AA1, BB1, CC1 пресекаются в точке M. Точки A2, B2, C2 являются соответственно серединами отрезков AM, BM, CM. Докажите, что A1B1C1= A2B2C2 [1, №1177].

Данная задача решается с применением центральной симметрии,

которая явно не видна (рис. 2). Тогда стоит разбить задачу на этапы:

1) установить взаиморасположение точек A1, B1, C1 и A2, B2, C2;

2) найти центр симметрии; 3) определить центральную симметрию.

Ж) В составлении плана решения задачи может помочь ответ на вопрос: «Для какого частного случая возможно достаточно быстро решить эту задачу?». Отыскав частный случай, можно воспользоваться решением задачи в найденном частном случае для более общего (но, может быть, не самого общего) случая. Так можно поступить, постепенно обобщая задачу до исходной, решаемой задачи. Совет: «Рассмотрите частные случаи задачной ситуации, решите задачу для какого-нибудь частного случая, примените индуктивные рассуждения».

3). Иногда решение задачи оказывается проще, если сформулировать и решить задачу сначала более общую, а затем с ее помощью решить данную задачу. Совет: «Попробуйте сформулировать и решить более общую задачу».

Эвристико-организационные советы для решения задачи можно оформить в виде таблицы. [20] [Приложение 9]

Таким образом, с помощью индуктивных обобщений при решении математических задач можно вывести новые методы решения задач, перейти от одних методов решения задач к более общим. Так же индуктивные обобщения подходов к решению задачи их систематизация помогают в создании системы советов, полезных в процессе отыскания решения задачи.

2.2 Обобщение как метод решения математических задач

Обобщение как метод решения может осуществляться:

1. Решение задачи «по индукции»;

2. Решение задачи в «общем» виде.

2.2.1 Обобщения «по индукции»

Метод решения задачи «по индукции» основан на полной или теоретической индукции.

Обобщение как метод решения осуществляется по следующей схеме:

1. Выделить частный случай задачи, для которого задача решается легко и решить задачу для этого частного случая;

2. Рассмотреть более общий, но все же частный случай, содержащий первый;

3. Рассмотреть общий случай.

Часто решение задач «по индукции» включает в себя только первый и третий пункты из вышепредложеной схемы.

Пример 19. В четырехугольнике две стороны AD и BC не параллельны. Что больше: полусумма этих сторон или отрезок (MN), соединяющий середины двух других сторон четырехугольника (рис. 3а)? [3]

Рис. 3

1) Выделим для начала частный случай, который можно легко решить. В данном случае будет удобно, если одну из сторон четырехугольника стянуть в точку (рис. 3б). Тогда пусть BC стягивается в точку В. В таком положении точка N совпадает с серединой К отрезка BD, и MN становится средней линией MK треугольника ABD. Таким образом исходная задача сводится к следующей: что больше, половина стороны AD треугольника ABD или отрезок MK, соединяющий середины двух других сторон.

По определению средней линии треугольника ответ очевиден: MK=AD

2) Теперь рассмотрим общий случай (Рис. 3в). Задача будет легко решена, если его свести к уже решенному частному случаю. Пусть K - середина диагонали BD четырехугольника ABCD. Из рассмотренного частного случая имеем: в треугольнике ABD MK=AD и МК|| AD, в треугольнике BCD KN=BC и KN||BC.

Так как по условию AD не параллельно BC, то M, N, K не лежат на одной прямой. Тогда по правилу треугольника, в треугольнике MKN видно, что MN<MK+KN = (AD+BC).

Следовательно, мы доказали, что полусумма сторон AD и BC четырехугольника ABCD больше чем отрезок (MN), соединяющий середины двух других сторон.

Каждый раз при решении общей задачи используется результат решения предыдущей частной задачи. Такой частный случай Д. Пойа называет ведущим [30].

Рассмотрим использование различных частных случаев при решении задач.

Пример 20. Дана окружность радиуса R. Из точки A, лежащей вне окружности и отстоящей от центра O на расстоянии а, проведена секущая. Точки B, C ее пересечения с окружностью соеденены с центром О. Пусть BOA и COA обозначены соответственно через и . Найти tg*tg(рис. 4а).

Так как требуется найти величину tg* tg в зависимости от данных, то есть а и R, то ответ должен быть одним и тем же при любом выборе секущей. Тогда верно, что этот же ответ должен получиться и при случае, когда секущая вырождается в касательную (рис. 4б). В данной задаче в качестве частного случая следует рассмотреть случай, когда проведена не секущая, а касательная.

Обобщение «по индукции» удачно подходит для вывода площадей поверхностей многогранников.

Пример 21. Вывести формулу боковой поверхности правильной n_угольной призмы.

Вначале можно вывести формулу площади боковой поверхности прямой правильной треугольной призмы.

Далее обобщаем задачу до вывода формулы площади боковой поверхности прямой правильной n_угольной призмы.

Иногда при решении задачи необходимо рассмотреть несколько вариантов, исчерпывающих все частные случаи, о чем прямо в задаче не сказано. Тогда метод будет иметь несколько другую схему рассуждений:

1) выделить все варианты частных случаев ситуации, описанной в задаче или создавшейся при ее решении;

2) решить задачу для каждого варианта;

3) объединить решения всех вариантов.

Часто этот метод называют методом исчерпывающих проб. Применение метода возможно при конечном числе вариантов.

Пример 22. Найти все четырехзначные числа, удовлетворяющие условиям: сумма цифр равна 11, само число делится на 11.

Обозначим искомое число: abcd=103*a+102*b+10*c+d.

Запишем условия задачи в систему:

Второе уравнение системы выражает делимость искомого числа на 11. Преобразовав систему, получим уравнение: 2*(a+c)=11*(k+1), причем k , так как разность в левой части второго уравнения не может быть меньше -11 и больше 11 (сумма цифр равна 11).

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать