Розвиток логічного мислення учнів у процесі вивчення геометр
p align="left">Подруге, “Начала” послужили джерелом, з якого черпали і на якому формувались уми багатьох видатних учених у наступні два тисячоліття, і основою для подальшого розвитку геометричних ідей. “Начала” Евкліда тісно пов'язані із сучасною людською культурою: з одного боку, всі сучасні шкільні підручники геометрії, за якими вчаться у школах усіх країн, так чи інакше мають своїм прообразом “Начала”.

Нарешті, велике історичне значення “Начал” Евкліда, як підкреслював Ф.Клейн, полягає в тому, що вони передали наступним поколінням ідеал цілком логічної обробки геометрії. “Начала” органічно пов'язані з розвитком обґрунтування математики загалом й геометрії зокрема.

Найхарактернішою особливістю математики є логічно послідовний ряд тверджень. Ця характерна риса точної науки яскраво виявилася вже в найдавніших її розділах арифметиці і геометрії.

Згодом з'явилися в математиці й формули особлива мова для запису міркувань і теорем, мова зручна, точна і лаконічна. Наприклад, відому теорему Піфагора можна сформулювати словами: “Квадрат гіпотенузи прямокутного трикутника дорівнює сумі квадратів катетів”. Але математик надасть перевагу короткій рівності:

Як бачимо, в теоремі Піфагора йдеться про властивість прямокутного трикутника. Узагалі, в будьякій теоремі чи формулі виражені властивості математичних об'єктів: чисел, фігур, математичних операцій, рівнянь, функцій...

З'ясуємо, як математики вводять у свої міркування нові об'єкти - означують математичні поняття.

Що таке квадрат? Згідно означення: це прямокутник, у якого всі сторони рівні між собою. Поняття квадрата, як бачимо, подається через більш загальне поняття прямокутника. А що таке прямокутник? Це паралелограм, у якого всі кути прямі. Ще один крок до поняття більш елементарного. А паралелограм? Це чотирикутник, у якого протилежні сторони попарно паралельні.

Такий спосіб побудови математичних понять використовував ще Аристотель. Великий древньогрецький філософ назвав його так: означення через рід і видову відмінність.

Наприклад, прямокутник відноситься до роду паралелограмів, а його видова відмінність полягає в тому, що усі його кути прямі. Паралелограм відноситься до роду чотирикутників, а видова відмінність - паралельність протилежних сторін. Поняття чотирикутника, у свою чергу, визначається через поняття відрізка, а той визначається як частина прямої, що міститься між двома точками цієї прямої, включаючи і ці точки.

Так у ході свого аналізу ми добралися до основних геометричних понять, про які мова йде в аксіомах геометрії “точка” і “пряма”, “лежати” і “між”.

А як визначаються основні поняття? Подивимось як це робив батько геометрії Евклід.

Відкриємо знову його «Начала»: “Точка є те, що не має частин. Лінія це довжина без ширини. Кінці ж лініїточка. Пряма лінія є та, що однаково розташована стосовно точок на ній...” [ ].

Чи задоволені Ви таким означенням? Мабуть, ні! Напевно, виникають питання: Хіба тільки про пряму лінію можна сказати, що вона однаково розташована відносно своїх точок? Адже такою ж властивістю володіє й коло. А що таке довжина? ширина? Хіба ці поняття теж не вимагають означень?

Особливо над цими питаннями математики стали замислюватися на межі XIX і XX століть. Глибокий аналіз Евклідової геометрії показав, що не такою вже і стрункою є ця древня споруда. Недоліки в її конструкції містяться у фундаменті. Почалася кропітка робота, спрямована на усунення цих недоліків.

То як же виглядають початки геометрії у сучасному викладі? Візьмемо книгу німецького математика Давида Гильберта ”Основи геометрії” [13]:

“Ми мислимо три різні системи речей: речі першої системи ми називаємо точками, речі другої системи ми називаємо прямими, речі третьої системи ми називаємо площинами. Ми мислимо точки, прямі й площини у визначених співвідношеннях і позначаємо ці співвідношення різними словами, а саме: належати, між, конгруентний (тобто такі, що суміщаються при накладанні), паралельний, неперервний”.

Як бачимо, Гильберт і не збирається означувати основні об'єкти геометрії точку, пряму, площину. Ці поняття вважаються основними, неозначуваними.

3.2 Роль логічних доведень геометричних тверджень(лем та теорем)

Доведення - це логічна операція обґрунтування істинності якогонебудь судження за допомогою інших істинних та з'язаний з ним суджень. Другими словами, це виведення одного знання з другого, істинність якого уже встановлена і перевірена практикою. Логічна структура доведення у всякому доведенні є теза, яка доводиться, аргумент, що використовуються на підтвердження тези і демонстрація, якими чином логічно будується процес доведення [10].

Роль аргументів в доведенні виконують: 1.Встановлені в науці узагальнення. 2. Очевидні положення, які безсумнівні і не потребують окремого доведення. 3. Достовірні факти і зібрані дані. Демонстрація - це логічний зв'язок між аргументами і тезою. Обґрунтування тези може мати форму умовиводу дедуктивного, індуктивного чи аналогії. Дедуктивне обґрунтування здебільшого зводиться до підведення часткового випадку (тези) під загальне правило і висловлюється у вигляді умовнокатегоричного судження. При цьому теза одержує значення істини, що підтверджена достовірними аргументами. Індуктивне обґрунтування підтверджує загальну тезу перерахуванням ряду фактів, прикладів. При цьому достовірність тези тут залежить від міри повноти перерахованих фактів та від всебічності розгляду самої тези.В аналогічному обґрунтуванні теза доводиться посиланням на достовірні факти і положення в інших подібних явищах, предметах і подіях. Застосовується у витлумаченні конкретних історичних подій, в моделюванні.

Способи доведення є прямі і побічні. В прямому доведенні теза обґрунтовується безпосередньо, “на пряму”. В побічному доведенні істина доводиться з використанням протилежної тезі допущення (антитези). Це доведення використовується тоді, коли тезу неможливо довести в прямому значенні, безпосередньо.

Спростування - це руйнування доведення шляхом виявлення хибності тези, хибності обґрунтування (аргументів) і хибності самої логіки доведення. Воно може бути прямим чи побічним. Пряме спростування показує абсурдність тези (зведення до абсурду). Побічне спростування доводить істинність тези, що несумісна з висунутою тезою опонента. При доведеннях і спростуваннях, особливо в усній формі, велике значення має ерудиція опонентів, послідовність розгортання думки, красномовство, а також вміння подіяти на почуття художнім словом, ораторськими здібностями тощо. Навмисне логічне заплутування думки одержало назву софізму (пустого мудрствування), яке хоча і може справити враження, але немає ніякої ні формальнологічного, ні змістовного значення.

Розбудовуючи будьяку математичну теорію, ми рухаємося вперед. Тобто виявляємо і доводимо все нові й нові теореми. Однак можна рухатись й у зворотному напрямку. Якщо ми захочемо вияснити на які теореми спирається кожна теорема, то ми обов'язково доберемося до таких тверджень, істинність яких приймається без доведення. Їх називають аксіомами або постулатами.

Уже на перших сторінках свого трактату Евклід перераховує постулати, на які посилається надалі, виводячи геометричні теореми: 1. Від усякої точки можна провести пряму лінію. 2. Обмежену пряму можна нескінченно продовжувати до прямої. 3. З усякого центра довільним розхилом може бути описане коло. 4. Усі прямі кути рівні між собою. 5. Якщо пряма, що падає на дві прямі, утворює внутрішні односторонні кути, то ці дві прямі, продовжені необмежено, зустрінуться з тієї сторони, де кути менші за два прямі.

На такому фундаменті зводиться будинок Евклідової геометрії. Наприклад, за допомогою свого п'ятого постулату Евклід доводить теорему про рівність внутрішніх різносторонніх кутів, утворених паралельними прямими й січною. Використовуючи цю теорему, доводить теорему про суму внутрішніх кутів трикутника і т. д. Так і утворюється одна теорема за іншою.

У математиці розглядаються різні геометричні об'єкти: пряма, крива, кут, коло, многокутники та інші. Усе це математичні поняття. Щоб правильно організувати процес формування того чи іншого поняття у школярів треба, насамперед чітко визначити його місце у науці і його зміст у шкільному курсі, пам'ятаючи про те, що друге не повинне суперечити першому.

Поняття - це одна з основних форм мислення, в якій відображається суть предметів і явищ реального світу в їх істотних, необхідних ознаках і відношеннях.

Отже, можна сказати, що поняття - це цілісна сукупність суджень про якийнебудь об'єкт, ядром якої є судження, що відображають істотні ознаки об'єкта. Розвиток сприйняття вимагає введення геометричного матеріалу, тому що сам геометричний матеріал - це образи, це символи. Отже, друга складова - це мова. Дані образи й символи є моделлю реальних об'єктів. Реальні об'єкти можуть бути створені в ході моделюючої діяльності. Ці моделі представлені поняттями (сторона, кут, трикутник, многокутник), які природно учні намагаються вивчити якомога найкраще. А засобом опису моделей є мова. Тому на уроках спочатку вводимо моделі (геометричні образи).

Третій компонент, розвиток уяви, закладається в безпосередній діяльності конструювання. Однак мова й у цьому випадку є засобом розвитку учнів. При цьому творча фантазія дітей нічим не обмежена, зміст геометричної уяви діти формулюють опираючись на науковий понятійний апарат і логічні прийоми сприймання мислення.

Головне спрямування геометричного матеріалу, визначеного програмою і реалізованого в системі ретельно дібраних задач, - сформувати достатньо повну систему геометричних уявлень (образи геометричних фігур, їх елементів, відношень між фігурами та їх елементами).

На цій основі формуються просторові уявлення й уява, розвивається мова й мислення учнів, а також організовується робота, спрямована на вироблення важливих практичних навичок.

Робота з формування геометричних уявлень має проводитися так: властивості фігур учні виявляють експериментально, одночасно засвоюють необхідну термінологію й дістають певні навички; головне місце в навчанні повинні посідати практичні роботи учнів, спостереження й робота з геометричними об'єктами.

Оперуючи різноманітними предметами, моделями геометричних фігур, розглядаючи їх у процесі численних дослідів, учні помічають найзагальніші їх ознаки (що не залежить від матеріалу, кольору, положення, маси і т.п.).

У методиці формування геометричних уявлень важливо іти від «речі» до фігури (до її образу), а також навпаки, - від образу до реальної речі.

При формуванні уявлень про пряму, криву, відрізок прямої у математиці в початкових класах, під час вивчення початкового курсу геометрії, що закладає основи планіметрії, чітко прослідковуються чотири основні лінії:

1) первісні (неозначувані) поняття - точка, пряма, площина, лежати, лежати між, лежати по один бік, довжина відрізка, градусна міра кута;

2) перші означення - відрізок, рівні відрізки, кут, рівні кути, трикутник, рівні трикутники, півпряма, паралельні прямі;

3) аксіоми планіметрії;

4) перші доведення.

Метод логічних доведень на основі аксіом та послідовному доведенню теорем дозволяє гаступним чином викласти тему „Розрахунок площ основних багатокутників (прямокутник, паралелограм, трикутник, трапеція) методом побудови рівновеликих геометричних фігур”.

Матеріал заснований на наступних аксіомах і теоремах [7]:

1. Про паралельні прямі

2. Про пересічу пряму для паралельних прямих і утворених нею кутах

3. Означеннях прямокутника, трикутника, паралелограма й трапеції

4. Про площу прямокутника

1). Про паралельні прямі

Теорема. Мінімальна відстань між двома паралельними прямими на площині є величина постійна й визначається перпендикуляром, опущеним з будьякої точки однієї прямої на іншу.

Доведення.

Розглянемо дві прямі а й b, кожна з яких перпендикулярна до прямої с (рис.3.1). Якби прямі а й b перетиналися, то із точки їхнього перетинання були б побудовані два перпендикуляри до прямої с, що неможливо. Отже, прямі а й b не перетинаються, тобто паралельні. Отже, дві прямі, перпендикулярні до третьої прямої, паралельні.

Рис. 3.1

Сформульоване твердження виражає ознака (перпендикулярність двох прямих до третьої прямої), по якому можна зробити висновок про паралельність двох прямих, або, коротко говорячи, ознака паралельності двох прямих.

2. Про січну паралельних прямих і утворених нею кутах

Нехай a і b дві паралельні прямі й c третя пряма, що перетинає прямі a і b (рис.3.2). Пряма c стосовно паралельних прямих a і b називається січною.

Січна утворить із паралельними прямими дві пари внутрішніх одностронних і дві пари внутрішніх навхрест лежачих кутів.

Рис.3.2

Нехай відповідні кути 1 і 2 рівні: l = 2. Тому що 2 = 3 (як вертикальні кути), те l = 3, тобто рівні навхрест лежачі кути. Отже, а¦ b.

Нехай сума однобічних кутів 1 і 2 дорівнює 180°. Тому що сума суміжних кутів 3 і 2 також дорівнює 180°, то l = 3, тобто рівні навхрест лежачі кути. Отже, а ¦ b

3. Означеннях прямокутника, трикутника, паралелограма й трапеції

Приведемо означення прямокутника, трикутника, паралелограма й трапеції.

Означення. Параллелограм це чотирикутник, у якого протилежні сторони рівні й паралельні, тобто лежать на паралельних прямих.

Означення.Прямокутник це параллелограм, у якого всі кути прямі.

Означення.Трапецією називається чотирикутник, у якого тільки дві протилежні сторони паралельні. Ці паралельні сторони називаються основагиями трапеції. Дві інші сторони називаються бічними сторонами.

Означення.Трикутником називається фігура . яка складається із трьох крапок, що не лежать на одній прямій, і трьох відрізків , попарно з'єднуючі ці точки. Точки називаються вершинами трикутника , а відрізки сторонами.

4. Про площу прямокутника

Теорема. Площа прямокутника зі сторонами дорівнює

На підставі вищевикладених аксіом і теорем, доведемо теореми про площі елементарних багатокутників методом рівновеликих і рівноскладених елементів багатокутників.

а) Площа паралелограма

Теорема. Площа паралелограма дорівнює добутку його основи на висоту.

Довести: SABCD=AD x BH

Доведення

1. Перекроїмо паралелограм у прямокутник. Для цього розріжемо його по висоті BH , і трикутник ABH прикладемо праворуч як показано на рис.3.3. Одержимо прямокутник HBCH1 , рівноскладений з паралелограмом ABCD. Але рівноскладені фігури є рівновеликими, тобто SHBCH1=SABCD .

2. SHBCH1=BC x BH. Але BC=AD по властивості паралелограма.

Тоді SABCD=AD x BH. Теорема доведена.

Рис.3.3 Дано: ABCDПаралелограм, ADпідстава, BHВисота

б) Площа трикутника

Теорема. Площа трикутника дорівнює половині добутку основи на висоту.

Рис.3.4. Дано: ABCТрикутник, AC основа, BH висота

Довести: SABC = ? AC x BH

Доведення

Перекроїмо трикутник у паралелограм. Для цього проведемо середню лінію MN і розріжемо трикутник ABC на дві частини. Трикутник MNC прикладемо до відрізка BM як показано на рис.3.4. Одержимо паралелограм ABDN, рівноскладений із трикутника ABC, а отже й рівновеликий. Тоді SABDN=SABC

SABDH=AN x BH. Але AH=1/2 AC

тому що NСередина AC.

Отже SABC=1/2 AC x BH. Теорема доведена.

в) Площа трапеції

Теорема. Площа трапеції дорівнює добутку напівсуми її підстав на висоту.

Рис.3.5 Дано: ABCDТрапеція, AD і BC основи, BHВисота

Довести: SABCD=1/2 (AD + BC) x BH

Доведення

Перекроїмо трапецію в трикутник. Для цього розріжемо її по відрізку BM, де M середина сторони CD.Трикутник BCM прикладемо до відрізка MD як показано на рис.3.5. Одержимо трикутник ABN рівноскладений із трапецією ABCD, а отже й рівновеликий , тобто SABN=SABCD

SABN=1/2 AN x BH, (3.1)

Але AN =AD + DN, а DN = BC.

Звідки AN=AD + BC.

Підставимо в (3.1), одержимо SABCD=1/2 (AD + BC) x BH. Теорема доведена.

г) Розрахунок площі несиметричного п'ятикутника методом побудови рівновеликого трикутника (рис.3.6).

Дано довільний 5кутник [3].

Рис.3.6 Перебудова п'ятикутника в равновеликий трикутник

Перебудовуємо його в рівновеликий трикутник :

1.Будуємо діагональ AC, з'єднуючи точки A й C усередині багатокутника

2.Продовжуємо по стороні AE пряму FK

3.Через точку B будуємо пряму BF, що паралельна діагоналі AC.

4.Із точки C в точку F перетинання прямих BF і FK проводимо відрізок CF

5.Оскільки й побудовані між паралельними прямими й мають загальну основу , то

їхні висоти однакові й дорівнюють відстані по перпендикуляру між паралельними прямими;

площі цих трикутників рівні, оскільки розраховуються як половина добутку висоти трикутника на його основу.

6.Через точки С й Eпроводимо другу діагональ п'ятикутника.

7.Через точку D будуємо пряму DK паралельну другій діагоналі СE

8. Із точки C проводимо відрізок CK у точку K перетинання прямих DK і FK.

9.Трикутник CED і побудований трикутник CEK розташовані між паралельними прямими CE й DK мають загальну основу CE - рівновеликі , тобто мають рівну площу.

10.Отриманий трикутник є рівноскладеним і рівновеликим п'ятикутнику , оскільки:

3.3 Роль практичного розв'язування геометричних задач

У процесі навчання математики задачі виконують різноманітні функції. Навчальні математичні задачі є дуже ефективним і часто незамінним засобом засвоєння учнями понять і методів шкільного курсу математики, взагалі математичних теорій. Велика роль задач у розвитку мислення й у математичному вихованні учнів, у формуванні в них умінь і навичок у фактичних застосуваннях математики. Рішення задач добре служить досягненню всіх тих цілей, які ставляться перед навчанням математиці. Саме тому для рішення задач використовується половина навчального часу уроків математики (700800 академічних годин в IVX класах). Правильна методика навчання рішенню математичних задач відіграє істотну роль у формуванні високого рівня математичних знань, умінь і навичок учнів [8].

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать