Розвиток логічного мислення учнів у процесі вивчення геометр
p align="left">Рішення математичних задач привчає виділяти посилки й висновки, дані й шукані, знаходити загальне, і особливе в даних, зіставляти й протиставляти факти. При рішенні математичних задач виховується правильне мислення, і насамперед учні привчаються до повноцінної аргументації. Рішення задачі повинне бути повністю аргументованим, тобто не допускаються незаконні узагальнення, необґрунтовані аналогії, пред'являється вимога повноти диз'юнкції (розгляд всіх випадків даної в задачі ситуації), дотримуються повнота й витриманість класифікації. При рішенні математичних задач в учнів формується особливий стиль мислення: дотримання формальнологічної схеми міркувань, лаконічне вираження думок, чітка розчленованість ходу мислення, точність символіки.

Варто виділити кілька видів задач по їхній навчальній ролі.

1) Задачі для засвоєння математичних понять. Відомо, що формування математичних понять добре проходить за умови кропіткої роботи над поняттями, їх визначеннями і властивостями. Щоб опанувати поняття, недостатньо вивчити їх визначення, необхідно розібратися в змісті кожного слова у визначенні, чітко знати властивості досліджуваного поняття. Таке знання досягається, насамперед, при рішенні задач і виконанні вправ.

2) Задачі для оволодіння математичною символікою. Однієї із цілей навчання математиці є оволодіння математичною мовою й, отже, математичною символікою. Найпростіші символи вводяться ще в початковій школі й в IVV класах (знаки дій, рівності й нерівності, дужки, знаки кута і його величини, паралельності й т.д.). Правильному вживанню досліджуваних символів треба навчати, розкриваючи при рішенні задач їхню роль і призначення.

3) Задачі для навчання доказам. Навчання доказам одна з найважливіших цілей навчання математиці.

Найпростішими задачами, з рішення яких практично починається навчання доказам, є задачіпитання й елементарні задачі на дослідження. Рішення таких задач полягає у відшуканні відповіді на питання й доказі його істинності.

ЗадачіПитання звичайно вимагають для свого рішення (доказу істинності відповіді) установлення однієї імплікації, одного логічного кроку від даних до доказуваного. Доказ же при рішенні більше складної задачі або доказ теореми являє собою ланцюжок кроківімплікацій.

Метою рішення задачпитань є усвідомлення, уточнення й конкретизація досліджуваних понять і зв'язків між ними. ЗадачіПитання необхідні також для засвоєння учнями символики і використовуваної мови. Приклади задачпитань:

х > в. Чи обов'язково x2 > в2?

Чи можуть дві бісектриси трикутника бути перпендикулярними? А дві висоти?

Задачі є невід'ємною складовою частиною курсу геометрії в середній школі. Дійсно, позбавлений задач курс елементарної геометрії представляв би собою лише групу теорем розміщених більшменш послідовно. Користі від вивчення такого курсу дуже мало.

Як відомо, вправи в геометрії залежно від умови й завдання ділять на три групи: задачі на обчислення, доказ і на побудову.

У задачах на обчислення потрібно виразити невідомі величини (відрізки, кути, площі, об'єми) або їхні відносини через відомі параметри. Якщо параметри дані в загальному виді, то результат виходить у буквах; якщо ж умова містить числові значення параметрів, відповідь доводиться до числа.

У задачах на доказ необхідно встановити наявність певних співвідношень між елементами розглянутої фігури: рівність або нерівність відрізків, кутів, паралельність або перпендикулярність прямих, площин і т.д. Іноді задачі цього типу можуть бути оформлені і як задачі на обчислення; наприклад, довести, що деякий кут дорівнює 45°, що об'єм однієї фігури в стількито раз більше об'єму іншої фігури.

Менш поширені задачі на дослідження. У таких вправах результат заздалегідь не повідомляється. Потрібно з'ясувати чи лежить деяка крапка на даній прямій (на даній площині), чи перетинаються дані окружності, чи паралельні дані прямі й т.п., визначити, який з даних відрізків більше, до якій зі сторін трикутника ближче дана крапка, установити залежність між перерахованими в умову елементами фігури.

У задачах на побудову невідомі величини визначаються в результаті виконання ряду геометричних побудов (за допомогою припустимих геометричних інструментів або в обумовленій проекції). Як правило, мова йде про побудову геометричної фігури за деяким даними про неї. У стереометрії нерідко замість відрізків і кутів дається зображення (наприклад, піраміди), на якому потрібно виконати побудову(наприклад, знайти перетин), тобто елементи фігури задаються їхнім положенням (на проекційному кресленні).

Вирішуючи задачі на побудову, учні здобувають перші теоретичні й практичні основи «графічної грамотності», знайомляться з найбільш уживаними прийомами їхнього рішення, з інструментами, використовуваними в різних умовах роботи (при креслярськоконструкторській практиці, при розмітці, при виконанні побудов на місцевості). У них розвиваються просторова уява, конструктивні здатності, кмітливість, винахідливість, тобто такі якості, які необхідні працівникам багатьох професій.

Доведення правильності рішення задачі і її дослідження сприяють кращому засвоєнню учнями теоретичного матеріалу, розвитку їхнього логічного мислення.

Навчання учнів геометричним побудовам переслідує дві мети: навчання виконанню властиво геометричних побудов і навчання рішенню задач на побудову.

Природно, що кожному із цих питань у різних класах повинна бути приділене різна увага.

В VI класі основна увага звертається на навчання учнів виконанню найпростіших геометричних побудов і їхньому систематичному використанню при формуванні й закріпленні найважливіших понять: перпендикулярність і паралельність прямих, найголовніші лінії в трикутнику, симетрія відносно прямій і т.д.

До кінця VI класу учні повинні одержати вже досить міцні навички в рішенні ряду конструктивних задач, включених у програму VI класу, коштовних із практичної точки зору й необхідних для подальшого вивчення матеріалу.

До цих побудов відносяться різні прийоми побудови відрізка, рівного даному, масштабною лінійкою або циркулем і лінійкою (немасштабної); дії над відрізками (у тому числі ділення відрізка навпіл) за допомогою масштабної лінійки або циркуля й лінійки (немасштабної); наближене ділення кута навпіл циркулем; побудова кута, рівній даному, транспортиром або циркулем і лінійкою; побудова прямого кута креслярським трикутником; дії, вироблені над кутами малкою, транспортиром, циркулем і лінійкою (немасштабною); побудова паралельних і перпендикулярних прямих різними прийомами.

В VII класі перед учителем стоять більш широкі задачі по вивченню й використанню геометричних побудов, у тому числі рішенню задач на побудову. Триває навчання виконанню деяких нових побудов і проводиться систематичне закріплення придбаних в VI класі вмінь; як і раніше, геометричні побудови використовуються при формуванні й закріпленні геометричних понять, а також для доказу існування деяких геометричних фігур.

Новими побудовами для учнів VII класу є: побудова центральносиметричних фігур, ділення відрізка на рівні частини, побудову окружності по трьох її крапках, ділення дуг окружності на рівні часта, ділення дуг і хорд окружності навпіл, проведення дотичної до окружності через дану крапку.

В VII класі триває формування вмінь учнів вибирати різні прийоми побудови залежно від умови задачі. Так, наприклад, перед ними може бути поставлене питання, яким способом вони будуть проводити через дану крапку дотичну до даної окружності, якщо:

а) крапка лежить поза окружністю й центр окружності невідомий,

б) крапка лежить на окружності й центр окружності невідомий,

в) крапка лежить на окружності, а центр окружності перебуває поза кресленням.

В VIII класі число нових побудов досить обмежене це ділення відрізка в даному відношенні, побудова фігур, подібних даним, побудова кутів за заданим значенням їхніх тригонометричних функцій і побудова правильних багатокутників. Таким чином, основна увага тут приділяється закріпленню раніше вивчених побудов і рішенню задач на побудову.

Продумуючи систему роботи з навчання школярів геометричним побудовам, особлива увага варто приділити методиці навчання рішенню задач на побудову.

Щоб знайти рішення, потрібно спочатку вивчити умова задачі, подивитися, які елементи шуканого трикутники дані. Для цього накреслимо довільний трикутник А1У1С1 (рис.3.7) і відзначимо елементи, що відповідають даним за умовою. Нехай це буде сторона А1С1 і кут З1А1У1. Але на кресленні немає різниці двох інших сторін. А тому що для рішення задачі ми повинні врахувати всі дані, то потрібно показати й різниця.

Рис. 3.7

Це можна зробити чотирма способами: на меншій стороні відкласти більшу від крапки З1 або від крапки В1 або на більшій відкласти меншу й знову відкладати як від крапки В1, так і від крапки А1. Якщо різниця буде біля крапки В1, то тоді дані не зв'язані між собою й не можна намітити план рішення. Якщо ж В1 А1 відкладемо від крапки В1 на В1С1, то дані: підстава, кут при підставах і різниця двох інших сторін - будуть зв'язані між собою, але й цей зв'язок не дає можливості намітити план рішення, вона недостатньо тверда, щоб побудувати, відновити фігуру Д2C1A1B1. Найкраще ввести різницю, відкладаючи B1D1 = B1C1, тому що в цьому випадку ми вже зможемо відновити фігуру З1А1Д1. Конкретизувавши в такий спосіб дані задачі, приступаємо до складання плану рішення.

Побудувавши в довільної прямий відрізок, дорівнює підставі, одержимо дві вершини трикутника: А1 і З1. Знаючи кут З1А1У1, ми можемо знайти й положення крапки D1, де D1А1 = В1А1 - В1С1. Залишається розглянути, як побудувати крапку В1 знаючи положення крапки D1. Тому що З1У1 = В1D1, то крапка В1 равноудалена від крапок З1 і D1, тому вона повинна лежати на перпендикулярі Р1Q1, проведеному до відрізка З1D1 через його середину. Крапка перетинання прямій Р1Q1 і лучачи А1D1 і буде крапкою В1. Отже, приходимо до наступної побудови. На довільній прямій відкладаємо відрізок, дорівнює підставі, і будуємо кут, рівний даному, одна зі сторін якого містить побудований відрізок, а вершина збігається з кінцем цього відрізка. На другій стороні кута відкладаємо відрізок, рівний різниці двох інших сторін трикутника, і будуємо геометричне місце крапок, равноудаленных від відповідних кінців підстав і побудованого відрізка. Крапку перетинання цього геометричного місця зі стороною кута, що містить різниця, з'єднуємо з кінцем підставі й одержуємо шуканий трикутник.

Із цього приклада видно, що при відшуканні рішення задачі на побудову, як і для арифметичних задач, застосовується аналітикосинтетичний метод. Після того як фігура побудована, необхідно встановити, чи задовольняє вона умовам задачі, тобто показати, що фігура, отримана з даних елементів певною побудовою, задовольняє всім умовам задачі. Виходить, доказ істотно залежить від способу побудови. Ту саму задачу можна вирішувати різними способами, залежно від наміченого при аналізі плану побудови, а тому, і доказ у кожному випадку буде своїм. Розглянемо задачу: «Побудувати трапецію по чотирьох сторонах» (рис.3.8).

Рис. 3.8

Провівши СК||ВА, рішення задачі зводимо до побудови трикутника КС по трьох сторонах: дві дорівнюють бічним сторонам трапеції (АК = КС), а КD = АD - ВР. Побудуємо трикутник КС, і, уважаючи сторону АD побудованої, доповнимо його до трапеції різними способами:

1) Проведемо ВС||А і, відклавши меншу підставу, з'єднаємо отриману крапку В с А Доказ зведеться до встановлення рівності: АВ = КС.

2) Якщо провести АВ||КС і ВС||А, те тоді вже треба довести, що АВ = КС і ВР = АК.

3) Якщо провести пряму СВ||DА й на ній знайти крапки В и В1, що відстоять від А на відстані, рівній бічній стороні, то в цьому випадку крапка В1 буде сторонньої й лише крапка В буде шуканої, причому доказ (ВР = АК) уже ускладнюється.

4) Якщо відшукувати крапку В, як крапку перетинання окружностей (А; АВ) і (З; СВ), те із двох крапок У и В2 тільки крапка В буде шуканою.

Третій і четвертий випадки підкреслюють необхідність доказу. В аналізі ми знаходимо необхідні умови, яким повинне підкорятися побудова, щоб одержати шукану фігуру. Треба ще встановити, що знайдені необхідні умови є й достатніми, тобто, що побудована фігура задовольняє всім вимогам задачі.

ВИСНОВКИ

Логічне мислення - це вивчення об'єкту чи явища природи поступово за моделю > “ознаки та поняття “ >” судження” > ” умовивід” з використанням 4х основних законів логіки: закону тотожності, закону суперечності; закону третього і закону достатньої підстави.

Структура геометрії - найбільш наближена до наведеного алгоритму логічного мислення, тому вивчення геометрії в шкільному курсі є процесом формування логічного типу мислення у учнів.

Взірцем учбового курсу геометрії з позицій логічного розвитку учнів є “Начала” Евкліда, в яких викладені основи планіметрії, стереометрії й арифметики. Головна особливість “Начал” у тому, що вони побудовані за єдиною логічною схемою, яку розробив Арістотель (384-322 рр. до н. е.).

Геометричне твердження за Евклідом, якщо воно повне, складається із шести логічно пов'язаних частин: 1) формулювання в загальних виразах; 2) постановка, яка відзначає конкретні дані, як правило, зображені у вигляді фігури; 3) визначення або вказівка (діорисмос), в якій вказується, що треба зробити або довести; 4) побудова, до якої входять додатки, необхідні для доведення; 5) саме доведення; 6) висновок, який повертається до формулювання і так само висловлюється в загальних виразах.

“Начала” починаються з означень, постулатів і загальних понять (п'ять постулатів і дев'ять аксіом), із яких Евклід розвинув всю геометричну систему виключно логічним шляхом на основі викладених 470 тверджень, побудованих чисто дедуктивним способом.

Аналіз сучасних підручників геометрії у школі показує, що потрібно ще раз повернутися до переробки системи викладання геометрії у школі, зосередивши послідовність викладення матеріалу у напрямку розвитку логічного мислення у учнів. При цьому, в підручниках необхідно ввести розділ „Логічна геометрія Евкліда”, оскільки вона, проіснувавши майже 2 тисячоліття, і в наш час є послідовним підручником для становлення системи логічного мислення.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

1. Болтянский В.Г. Равновеликие и равносоставленные фигуры. М., „Просвещение”, 1956. 64 с.

2. Гейдман Б.П. Площади многоугольников - М.: МЦНМО,2001. 24 с.

3. Гиндикин С.Г. Алгебра логики в задачах. - М.: Просвещение, 1972. - 287 с.

4. Груденов Я.И. Психолого - дидактические основы методики обучения математики. - М.: Педагогика, 1987. - 160 с.

5. Екимова М.А., Кукин Г.П. Задачи на разрезание. - М.: МЦНМО, 2002. 120 с.

6. Зміст навчального матеріалу та державні вимоги до рівня загальноосвітньої підготовки учнів // Міністерстов освіти України, 2005

7. Каган В.Ф. Очерки по геометрии. М., „Просвещение”, 1963. 572 с.

8. Кугай Н. В. Розвиток умінь старшокласників доводити твердження у процесі вивчення алгебри і початків аналізу. - Рукопис. // Дисертація на здобуття наукового ступеня кандидата педагогічних наук - Національний педагогічний університет імені М. П. Драгоманова. Київ, 2007.

9. Осинская Н.В. Формирование умственной культуры учащихся в процессе обучения математике. - К. : Рад. школа, 1989. - 192 с.

10. Середа В.Ю. Що означає мислити логічно. К.: „Р.Школа”, 1989. 175с.

11. Сверчевська І.А. Методична система вивчення геометричних тіл у загальноосвітній школі : дис... канд. пед. наук: 13.00.02 / Національний педагогічний унт ім. М.П.Драгоманова. -- К., 2006. -- 325арк.

12. Якиманская И.С. Знания и мышление школьников - М., Просвещение, 1985. - 240 с.

13. http://www.wikipedia.com - “Начала» Евклида, 2010

Додаток А

Зміст навчального матеріалу та державні вимоги до рівня загальноосвітньої підготовки учнів [6]

Таблиця А.1

7й клас. ГЕОМЕТРІЯ

Кть год.

Зміст навчального матеріалу

Державні вимоги до рівня загальноосвітньої підготовки учнів

4

Тема 1. НАЙПРОСТІШІ ГЕОМЕТРИЧНІ ФIГУРИ ТА

?????? ЇХ ВЛАСТИВОСТІ

Геометричні фігури. Точка, пряма, відрізок, промінь, кут та їх властивості. Вимірювання відрізків і кутів. Бісектриса кута. Відстань між двома точками.

Вимірювальні, креслярські та допоміжні інструменти, що використовуються в геометрії.

Наводить приклади геометричних фігур.

Описує точку, пряму, відрізок, промінь, кут.

Формулює:

означення: рівних відрізків, рівних кутів, бісектриси кута;

властивості: розміщення точок на прямій; вимірювання відрізків і кутів.

Знаходить довжину відрізка, градусну міру кута, використовуючи властивості їх вимірювання.

Зображує за допомогою креслярських інструментів геометричні фігури, вказані у змісті.

Застосовує вивчені означення і властивості до розв'язування задач.

12

Тема 2. ВЗАЄМНЕ РОЗТАШУВАННЯ ПРЯМИХ НА

???????ПЛОЩИНІ

Суміжні та вертикальні кути, їх властивості.

Паралельні та перпендикулярні прямі, їх властивості.

Перпендикуляр. Відстань від точки до прямої. Кут між двома прямими, що перетинаються.

Кути, утворені при перетині двох прямих січною. Ознаки паралельності прямих. Властивості кутів, утворених при перетині паралельних прямих січною.

Пояснює, що таке аксіома, теорема, означення, ознака.

Наводить приклади геометричних фігур, вказаних у змісті.

Зображує за допомогою лінійки і косинця паралельні й перпендикулярні прямі.

Описує кути, утворені при перетині двох прямих січною.

Формулює:

означення: суміжних і вертикальних кутів, паралельних і перпендикулярних прямих, перпендикуляра, відстані від точки до прямої;

властивості: суміжних і вертикальних кутів; паралельних і перпендикулярних прямих, кутів, утворених при перетині паралельних прямих січною;

ознаки паралельності прямих.

Обґрунтовує взаємне розміщення вказаних у змісті геометричних фігур, спираючись на їх властивості.

Доводить властивості суміжних і вертикальних кутів, паралельних прямих, перпендикулярних прямих, ознаки паралельності прямих.

Застосовує вивчені означення і властивості до розв'язування задач.

18

Тема 3. ТРИКУТНИКИ

Трикутник і його елементи. Рівність геометричних фігур. Ознаки рівності трикутників.

Види трикутників. Рівнобедрений трикутник, його властивості та ознаки. Висота, бісектриса і медіана трикутника.

Ознаки рівності прямокутних трикутників. Властивості прямокутних трикутників.

Сума кутів трикутника. Зовнішній кут трикутника та його властивості.

Нерівність трикутника.

Описує зміст поняття “рівні фігури”.

Наводить приклади рівних фігур.

Зображує та знаходить на малюнках рівносторонні, рівнобедрені, прямокутні трикутники та їх елементи.

Формулює:

означення: різних видів трикутників; бісектриси, висоти, медіани трикутника;

властивості: рівнобедреного і прямокутного трикутників;

ознаки: рівності трикутників; рівнобедреного трикутника.

Класифікує трикутники за сторонами і кутами.

Доводить: ознаки рівності трикутників, ознаки рівності та властивості прямокутних трикутників, властивості й ознаки рівнобедреного трикутника, властивості кутів трикутника, властивість зовнішнього кута трикутника.

Застосовує вивчені означення і властивості до розв'язування задач.

14

Тема 4. КОЛО І КРУГ. ГЕОМЕТРИЧНІ ПОБУДОВИ

Коло. Круг.

Дотична до кола, її властивість.

Коло, описане навколо трикутника.

Коло, вписане в трикутник.

Задача на побудову та її розв'язування.

Основні задачі на побудову:

-- побудова трикутника за трьома сторонами;

-- побудова кута, що дорівнює даному;

-- побудова бісектриси даного кута;

-- поділ даного відрізка навпіл;

-- побудова прямої, яка перпендикулярна до даної пря мої.

Геометричне місце точок.

Метод геометричних місць.

Пояснює, що таке: задача на побудову; геометричне місце точок.

Зображує на малюнках коло та його елементи; дотичну до кола; коло, вписане в трикутник, і коло, описане навколо нього.

Описує взаємне розташування кола і прямої.

Формулює:

означення: кола, круга, їх елементів; дотичної до кола, кола, описаного навколо трикутника, і кола, вписаного в трикутник;

властивості: серединного перпендикуляра, бісектриси кута, дотичної до кола, діаметра і хорди, точки перетину серединних перпендикулярів сторін трикутника, точки перетину бісектрис кутів трикутника.

Доводить властивості: дотичної до кола, існування кола, вписаного в трикутник, та кола, описаного навколо трикутника.

Доводить правильність виконаних побудов для основних задач.

Розв'язує основні задачі на побудову та нескладні задачі, розв'язання яких зводиться до основних побудов.

Застосовує вивчені означення і властивості до розв'язування задач.

Таблиця А.2

8й клас. ГЕОМЕТРІЯ

Кть год.

Зміст навчального матеріалу

Державні вимоги до рівня загальноосвітньої підготовки учнів

24

Тема 1. ЧОТИРИКУТНИКИ

Чотирикутник, його елементи. Паралелограм та його властивості. Ознаки паралелограма. Прямокутник, ромб, квадрат та їх властивості. Трапеція.

Вписані та описані чотирикутники. Вписані та центральні кути.

Теорема Фалеса. Середня лінія трикутника, її властивості.

Середня лінія трапеції, її властивості.

Розпізнає опуклі й неопуклі чотирикутники.

Описує чотирикутник і його елементи.

Зображує та знаходить на малюнках чотирикутники різних видів та їх елементи.

Формулює:

означення і властивості вказаних у змісті чотирикутників; центральних і вписаних кутів; вписаного і описаного чотирикутників; середньої лінії трикутника і трапеції;

ознаки паралелограма; вписаного і описаного чотирикутників;

теорему Фалеса.

Доводить властивості й ознаки паралелограма, властивості прямокутника, ромба, квадрата, суми кутів чотирикутника, середньої лінії трикутника і трапеції, вписаних та центральних кутів, вписаного та описаного чотирикутників, теорему Фалеса.

Застосовує вивчені означення і властивості до розв'язування задач.

14

Тема 2. ПОДІБНІСТЬ ТРИКУТНИКІВ

Узагальнена теорема Фалеса.

Подібні трикутники. Ознаки подібності трикутників. Застосування подібності трикутників:

-- середні пропорційні відрізки в прямокутному трикут нику;

-- властивість бісектриси трикутника.

Розпізнає на малюнках подібні трикутники.

Формулює:

узагальнену теорему Фалеса;

означення подібних трикутників;

ознаки подібності трикутників.

Доводить ознаки подібності трикутників, теореми про середні пропорційні відрізки в прямокутному трикутнику.

Застосовує вивчені означення і властивості до розв'язування задач.

10

Тема 3. МНОГОКУТНИКИ. ПЛОЩІ МНОГОКУТНИ

???????КІВ

Многокутник та його елементи.

Опуклі й неопуклі многокутники.

Сума кутів опуклого многокутника.

Вписані й описані многокутники.

Поняття площі многокутника. Основні властивості площ.

Площа прямокутника, паралелограма, трикутника. Площа трапеції.

Пояснює, що таке площа многокутника.

Описує многокутник, його елементи; опуклі й неопуклі многокутники, основні властивості площ.

Зображує та знаходить на малюнках многокутник і його елементи, многокутник, вписаний у коло, і многокутник, описаний навколо кола.

Формулює:

означення: многокутника, вписаного у коло, многокутника, описаного навколо кола;

теореми: про суму кутів опуклого многокутника; про площу прямокутника, паралелограма, трикутника, трапеції.

Доводить теореми про площі паралелограма, трикутника, трапеції.

Знаходить площі многокутників, використовуючи вивчені властивості й формули.

Застосовує вивчені означення і властивості до розв'язування задач.

14

Тема 4. РОЗВ'ЯЗУВАННЯ ПРЯМОКУТНИХ ТРИКУТ

???????НИКІВ

Теорема Піфагора.

Перпендикуляр і похила, їх властивості.

Синус, косинус і тангенс гострого кута прямокутного трикутника.

Співвідношення між сторонами і кутами прямокутного трикутника.

Значення синуса, косинуса і тангенса деяких кутів.

Розв'язування прямокутних трикутників. Прикладні задачі.

Описує похилу.

Формулює:

властивості перпендикуляра і похилої;

означення синуса, косинуса і тангенса гострого кута прямокутного трикутника;

теорему Піфагора;

співвідношення між сторонами та кутами прямокутного трикутника.

Знаходить значення синуса, косинуса і тангенса для кутів 30°, 45°, 60°.

Доводить теорему Піфагора.

Розв'язує прямокутні трикутники.

Застосовує алгоритми розв'язування прямокутних трикутників до розв'язування простіших прикладних задач.

Таблиця А.3

9й клас. ГЕОМЕТРІЯ

Кть год.

Зміст навчального матеріалу

Державні вимоги до рівня загальноосвітньої підготовки учнів

16

Тема 1. РОЗВ'ЯЗУВАННЯ ТРИКУТНИКІВ

Синус, косинус, тангенс кутів від 0° до 180°.

Тотожності:

sin2б + cos2б = 1; sin (180° - б) = sinб;

cos (180° - б) = - cosб;

sin (90° - б) = cosб; cos (90° - б) = sinб.

Теореми косинусів і синусів.

Розв'язування трикутників. Прикладні задачі.

Формули для знаходження площі трикутника.

Пояснює, що таке синус, косинус і тангенс кутів від 0° до 180°.

Формулює теореми косинусів і синусів.

Описує основні випадки розв'язування трикутників та алгоритми їх розв'язування.

Доводить теореми синусів і косинусів.

Розв'язує трикутники. Застосовує алгоритми розв'язування трикутників до розв'язування прикладних задач.

Використовує формули для знаходження площі трикутника (Герона, за двома сторонами і кутом між ними, за радіусом вписаного і описаного кола) в розв'язуванні задач.

6

Тема 2. ПРАВИЛЬНІ МНОГОКУТНИКИ

Правильні многокутники. Формули радіусів вписаних і описаних кіл правильних многокутників.

Побудова правильних многокутників.

Довжина кола. Довжина дуги кола. Площа круга та його частин.

Описує круговий сектор і сегмент.

Формулює:

означення правильного многокутника;

теореми: про відношення довжини кола до його діаметра; про площу круга.

Записує і пояснює формули:

радіусів вписаного і описаного кіл правильного многокутника;

радіусів вписаного і описаного кіл правильного трикутника, чотирикутника (квадрата), шестикутника;

довжини кола і дуги кола;

площі круга, сектора і сегмента.

Будує правильний трикутник, чотирикутник, шестикутник.

Доводить формули радіусів вписаних і описаних кіл правильних многокутників.

Застосовує вивчені означення і властивості до розв'язування задач.

10

Тема 3. ДЕКАРТОВІ КООРДИНАТИ НА ПЛОЩИНІ

Прямокутна система координат на площині. Координати середини відрізка. Відстань між двома точками із заданими координатами. Рівняння кола і прямої.

Описує прямокутну систему координат.

Розпізнає рівняння кола та прямої.

Записує і доводить формули координати середини відрізка та відстані між двома точками.

Застосовує вивчені формули і рівняння фігур до розв'язування задач.

10

Тема 4. ГЕОМЕТРИЧНІ ПЕРЕТВОРЕННЯ

Переміщення та його властивості.

Симетрія відносно точки і прямої, поворот, паралельне перенесення. Рівність фігур.

Перетворення подібності та його властивості. Гомотетія. Подібність фігур. Площі подібних фігур.

Описує симетрію відносно точки і прямої, паралельне перенесення, поворот; рівність фігур; перетворення подібності, гомотетію, подібність фігур.

Будує фігури, в які переходять дані фігури при переміщеннях та перетвореннях подібності.

Наводить приклади фігур, які мають вісь симетрії, центр симетрії; подібних фігур.

Формулює властивості переміщення та перетворення подібності; теорему про відношення площ подібних фігур.

Застосовує вивчені означення і властивості до розв'язування задач.

10

Тема 5. ВЕКТОРИ НА ПЛОЩИНІ

Вектор. Модуль і напрям вектора. Рівність векторів. Координати вектора. Додавання і віднімання векторів. Множення вектора на число. Колінеарні вектори.

Скалярний добуток векторів.

Описує вектор, модуль і напрям вектора, координати вектора, дії над векторами, рівність і колінеарність векторів.

Відкладає вектор, рівний даному; вектор, рівний сумі (різниці) векторів.

Формулює:

властивості дій над векторами;

означення скалярного добутку векторів, його властивості.

Застосовує вивчені означення і властивості до розв'язування задач.

8

Тема 6. ПОЧАТКОВІ ВІДОМОСТІ З СТЕРЕОМЕТРІЇ

Взаємне розташування прямих у просторі. Взаємне розташування площин. Взаємне розташування прямої та площини. Перпендикуляр до площини.

Пряма призма. Піраміда. Площа поверхні та об'єм призми і піраміди.

Циліндр. Конус. Куля. Площі поверхонь і об'єми циліндра, конуса і кулі.

Розв'язування задач на обчислення площ поверхонь і об'ємів, у тому числі прикладного характеру.

Описує взаємне розміщення в просторі двох прямих; прямої та площини; двох площин.

Пояснює, що таке:

пряма призма, піраміда, циліндр, конус, куля та їх елементи;

поверхня і об'єм многогранника і тіла обертання.

Зображує і знаходить на малюнках многогранники і тіла обертання та їх елементи.

Записує і пояснює формули площ поверхонь і об'ємів зазначених у програмі геометричних фігур.

Застосовує вивчені означення і властивості до розв'язання задач у т. ч. прикладного змісту.

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать