Развитие логического мышления учащихся при решении задач на построение
средней школе нецелесообразно при решении каждой задачи требовать от учащихся в письменной или устной форме подробного описания построений. Такое описание, особенно в VI-VII классах, требует большой затраты времени. Интерес учащихся к решению задач на построение понижается, ибо главной трудностью стано-вится изложение решения, сводящееся иногда к целым «сочинениям».

Если анализ задачи выполнен достаточно подробно, то и при устном пояснении к решению, и в письменных работах достаточно, если ученик указывает, например: «Строим прямоугольный треугольник по гипотенузе и ка-тету», - и верно выполняет это построение. Учитель все-гда в состоянии проверить, правильно ли выполнил ученик построение, если даже описание и отсутствует. Нередко, разобрав с учащимися условие задачи и на-метив план построения, предлагаем учащимся выполнить это построение в тетрадях, не требуя каких-либо поясне-ний в письменной форме.

Важна и цель, для достижения которой решается та или иная задача на построение. Если на данном уроке, например, главная цель решения задач - обучение отыс-канию решений, то мы стремимся научить учащихся анализировать условие задачи, уметь видеть на чертеже нужные фигуры и имеющиеся отношения между фигура-ми и их элементами. В таком случае незачем усложнять работу требованием подробного описания построения. Все внимание учащихся должно быть сосредоточено на главном, и не нужно распылять его на второстепенные вопросы, не имеющие прямого отношения к поставленной цели.

Если на первых порах решения задач на построение мы всегда требуем непосредственного выполнения по-строения инструментами, то нередко, когда убеждены, что все учащиеся класса сумеют выполнить чертеж с по-мощью инструментов, разрешаем учащимся указывать лишь план построении, выполняя чертеж от руки, а ино-гда просто ограничиваемся лишь составлением плана построения, то есть анализом, или с проведением еще исследования.

4. С введением геометрического материала в курс арифметики учащиеся уже в V классе приобретают навыки в применении таких инструментов, как линейка, циркуль, чертежный треугольник, знакомятся с устройством и применением транспортира. При вычерчивании секторных диаграмм, а также на уроках географии они закрепляют свои знания об устройстве транспортира и приобретают навыки в применении его для измерения углов и для построения заданных углов. На уроках труда в школьных мастерских пятиклассники при разметке при-меняют линейку, циркуль, угольник. Эти навыки закреп-ляются в VI классе при изучении первой темы курса геометрии «Основные понятия».

При изучении свойств прямой учащиеся выполняют построения всевозможных прямых через одну, две, три, четыре точки. Выполняя необходимые построения, они убеждаются, что через одну точку можно провести сколь-ко угодно прямых, через две - только одну, через три точки можно провести три прямые или только одну, четы-ре точки могут определять только одну прямую, или четыре прямые, или шесть прямых. Это содействует раз-витию пространственных представлений.

Учащиеся должны приобрести прочные навыки в вы-полнении действий над отрезками и в выполнении нало-жения одного отрезка на другой, что существенно важно для дальнейшей работы. Здесь они закрепляют навыки в применении линейки и циркуля, так как часто нужно уметь «взять» отрезок циркулем, отложить его на произ-вольной прямой, сравнить отрезки путем наложения одного на другой. Применение транспортира, причем не только в качестве малки, но и для измерения углов, облегчает усвоение раздела «Сравнение углов. Действия над углами: сложение, вычитание, умножение на целое число. Биссектриса угла».

Доказательство.

1. После того как фигура построена, необходимо установить, удовлетворяет ли она условиям задачи, то есть показать, что фигура, полученная из данных элемен-тов определенным построением, удовлетворяет всем усло-виям задачи. Значит, доказательство существенно за-висит от способа построения. Одну и ту же задачу можно решать различными способами, в зависимости от наме-ченного при анализе пла-на построения, а поэтому, и доказательство в каж-дом случае будет свое, Рассмотрим задачу: «По-строить трапецию по четы-рем сторонам» (рис. 26).

Рис. 26

Проведя СК||ВА, решение задачи сводим к построению треугольника КСD по трем сторонам: две равны боковым сторонам трапеции (АК = КС), а КD = АD - ВС. Построим треугольник КСD, и, считая сторону АD построенной, допол-ним его до трапеции различными способами:

1) Проведем ВС||АD и, отложив меньшее основание, соединим полученную точку В с А Доказательство све-дется к установлению равенства: АВ = КС.

2) Если провести АВ||КС и ВС||АD, то тогда уже надо доказать, что АВ = КС и ВС = АК.

3) Если провести прямую СВ||DА и на ней найти точки В и В1, отстоящие от А на расстоянии, равном бо-ковой стороне, то в этом случае точка В1 будет посторон-ней и лишь точка В будет искомой, причем доказатель-ство (ВС = АК) уже усложняется.

4) Если отыскивать точку В, как точку пересечения окружностей (А; АВ) и (С; СВ), то из двух точек В и В2 только точка В будет искомой.

Третий и четвертый случаи подчеркивают необходи-мость доказательства. В анализе мы находим необходи-мые условия, которым должно подчиняться построение, чтобы получить искомую фигуру. Надо еще установить, что найденные необходимые условия являются и доста-точными, то есть, что построенная фигура удовлетворяет всем требованиям задачи.

2. При решении простейших задач, когда все условия задачи находят непосредственное отражение в плане по-строения, нет необходимости доказывать, что фигура, полученная из данных элементов таким построением, является искомой. Например: «Построить треугольник по двум сторонам и углу между ними». Здесь доказатель-ство сводится к простой проверке, такие ли взяли сторо-ны, как данные, и будет ли построенный угол равен дан-ному. В подобных задачах доказательство является излишним, ибо правильность решения обеспечивается соответствием построения анализу и данным условия задачи.

Но иногда не все условия отражаются в плане анали-за и при построении. Например, в случае (3) точка В действительно должна лежать на ВС и отстоять от точки А на данном расстоянии. Но этого недостаточно, так как отрезок АВ должен быть параллельным СК.

Так как доказательство зависит от избранного реше-ния, то, не ознакомившись с анализом и построением, нельзя сказать, правильно пли неправильно проведено доказательство.

3. Доказательство не просто зависит от анализа и по-строения, между ними существует взаимосвязь и взаимообусловленность. Построение проводится по пла-ну, составленному при анализе. Таких планов можно указать несколько. Построение и доказательство являют-ся своеобразным критерием правильности и рациональности составленного плана. Если план не осуществим имеющимися инструментами или же построение оказыва-ется нерациональным, мы вынуждены искать новый план решения. Аналогичным образом и доказательство, и исследование влияют на анализ, предопределяя нередко выбор плана решения.

4. Для упрощения доказательства целесообразно предлагать учащимся и такие задачи на доказательство, которые не только служат для развития математического мышления или для пополнения объема знаний, но и могут быть использованы при решении задач на построение. Например, при изучении частных видов параллелограм-ма решаем задачи:

1) Если у параллелограмма диагонали взаимно пер-пендикулярны, то такой параллелограмм есть ромб.

2) Если у параллелограмма диагональ делит один из углов пополам, то такой параллелограмм есть ромб.

3) Если у параллелограмма диагонали равны, то та-кой параллелограмм есть прямоугольник и т. п.

При решении задач на построение методом подобия, выбрав центр подобия и найдя коэффициент подобия, выполняем подобное преобразование многоугольника, подобного искомому, почти всегда не тем способом, который изложен в учебнике А. П. Киселева, и всякий раз вынуждены проводить отдельное доказательство, что по-лученный многоугольник - искомый. Целесообразно ознакомить учащихся с общепринятым способом по-строении, основанным на том, что у гомотетичных многоугольников сходственные стороны попарно параллельны. Благодаря этому при решении почти всех задач на по-строение многоугольников методом подобия доказательство, что полученный многоугольник искомый, значи-тельно упрощается.

5. Хотя доказательство при решении задач на построение проводится аналогично доказательству теорем, с использованием аксиом, теорем и свойств геометрических фигур, между ними имеется и некоторое раз-личие. При доказательстве теорем в большинстве случа-ев без труда выделяют условие и заключение. При ре-шении задач на построение уже труднее найти данные, на основании которых можно доказать, что построенная фигура является искомой. Поэтому при решении кон-структивных задач в классе целесообразно иногда спе-циально выделять, что дано и что требуется доказать. Например, при решении задачи: «Построить ромб по двум его диагоналям» предлагаем ученику записать, что дано (диагонали взаимно перпендикулярны и, пересекаясь, делятся пополам) и что требуется доказать (стороны равны). Однако при решении задач дома и в кон-трольных работах мы не требуем оформления доказа-тельства с выделением отдельно условия и заключения.

Нет надобности требовать проведения особого дока-зательства в задачах, где правильность решении очевид-на. А иногда, если даже правильность решении и не усматривается непосредственно, учитель, учитывая на-значение решаемых задач, может не требовать доказательства, предупредив об этом учащихся.

Исследование.

Сущность и значение исследования.

Каждая задача на построение включает в себя требование построить геометрическую фигуру, удовле-творяющую определенным условиям, которые в боль-шинстве своем задаются размерами или положенном некоторых геометрических образов. Условия задач фор-мулируются в самом общем виде, а поэтому исходные данные являются как бы параметрами, принимающими всевозможные допустимые значения.

Допустимые значения определяются наиболее есте-ственным образом. В задаче: «Построить треугольник по двум сторонам а и b и углу С между ними» допусти-мыми значениями для а и b будут всевозможные отрез-ки, которые можно характеризовать положительными числами, их длинами, а угол С может принимать все-возможные значения от 0° до 180°.

В задаче: «Построить окружность, касающуюся длиной окружности в данной на ней точке и данной прямой» прямая может занимать любое положение на плоскости; окружностью также может быть любая окружность на плоскости, но так как окружность характери-зуется положением центра и величиной радиуса, то мож-но сказать, что центром данной окружности может быть любая точка плоскости, а радиусом - любой отрезок, длина которого 0 < R < ?. (Иногда рассматривают и направленные окружности, тогда уже радиус может быть и неположительным чистом, но подобные случаи обычно оговариваются в условии задачи.) Точка также может занимать произвольное положение, но уже не на плос-кости, а на данной окружности, так как она обязательно должна принадлежать ей.

Иногда невозможность построения искомой фигу-ры очевидна, если хоть один из данных элементов не принадлежит области допустимых значений. Например: «Построить треугольник по двум сторонам а и b и углу между ними в 240°». Такая задача решения не имеет, так как любой угол треугольника всегда меньше 180°.

Но если все данные принадлежат соответствующей области существования, то в большинстве случаев много-образие возможных положений, характер изменения данных приводит, как и в алгебре при решении задач с параметрическими данными, к постановке вопросов: При каких данных задача не имеет решения? Как изме-няется ответ при определенном характере изменения дан-ных? Каковы должны быть значения исходных данных, чтобы получить намеченный ответ? и т. п.

При анализе, а значит, и при построении всегда исходим из предположения, что искомая фигура сущест-вует, не учитывая всего многообразия данных, их разме-ров и взаимных соотношений. Решение задачи на построение считается законченным, если указаны необхо-димые и достаточные условия, при которых найденное решение является ответом на задачу. Значит, мы долж-ны установить, при всяком ли выборе данных задача имеет решение и если имеет, то сколько. Например: «Построить окружность, проходящую через три данные раз-личные точки». Если данные точки не лежат на одной прямой, то задача имеет решение и притом только одно; если же точки лежат на одной прямой, то задача реше-ния не имеет.

Если при определенном сочетании данных общее ре-шение не применимо, то необходимо дать новое решение, которое часто не незначительно отличается от общего или является его вырожденным случаем. Иногда план реше-ния сохраняется, по его осу-ществление с помощью ин-струментов выполняется не так, как в общем случае.

В средней школе обычно ограничиваются лишь двумя моментами: 1) выясняют число решений в зависимости от данных и 2) изменяют или упрощают решение для отдельных случаев. Правда, для некоторых задач в исследовании дается еще и ответ па вопрос: при каких условиях искомая фигура удовлетворяет тем или иным дополнительным условиям. Например: «Около данного треугольника описать окружность. Выяснить, когда центр этой окружности находится внутри треугольника, вне треугольника или принадлежит одной из его сторон». Ответ на последний вопрос также дается при исследовании.

Исследование является составной частью реше-ния. Решение задачи на построение можно считать за-конченным, если узнаем, сколько искомых фигур полу-чим при определенных данных, и, в частности, указано, когда не получим искомый геометрический образ. Но ис-следование в задачах на построение, как и исследование при решении других задач по математике, имеет и общеобразовательное значение.

В процессе исследования учащиеся упражняются в практическом применении диалектического метода мы-шления. Они видят, что изменение данных задачи вызы-вает изменение искомой фигуры. Мы имеем дело не с за-костенелыми, а с изменяющимися геометрическими образами, изменение одних величин обусловлено изменением других.

Для правильного проведения исследования нужно обладать хорошо развитым логическим мышлением. Значит, с другой стороны, исследование задач на по-строение является хорошим материалом для развития логического мышления учащихся.

Заметим, что и при решении задач на доказательст-во или вычисление учащимся нередко нужно для по-строения правильного чертежа также проводить иссле-дование. Часто необходимо предварительно выяснить, какой вид данного треугольника (остроугольный или ту-поугольный), какие стороны принять равными данным отрезкам. Например, при решении задачи: «Определить периметр равнобедренного треугольника со сторонами в 7 см и 3 см» вначале нужно установить, что основанием является отрезок длиной 3 см, а не 7 см.

Нередко уже при анализе задач на построение мы вынуждены учитывать различные положения данных и искомых элементов. Например, решая задачу: «Дана окружность и на ней три точки М, N и Р, в которых пере-секаются с окружностью (при продолжении) высота, биссектриса и медиана, исходящие из одной вершины вписанного треугольника. Построить этот треугольник», в первую очередь нужно выяснить, что точка N (соответ-ствует биссектрисе) расположена между М и Р, рассмат-ривая дугу MP, меньшую полуокружности.

Приведем еще такой пример: «На окружности даны две точки А и В. Из этих точек провести две параллель-ные хорды, сумма которых дана». Решение задачи легко свести к построению вписанной трапеции с заданной сум-мой оснований, вершинами которой являются точки А и В. Но решение зависит от того, будет ли АВ боковой сто-роной трапеции или ее диагональю. Вновь анализ вклю-чает в себя элементы исследования.

Несмотря на необходимость и целесообразность исследования при решении задач на построение, ему и в школе, и в методической литературе уделяется недоста-точно внимания. Большое внимание уделяется обычно отысканию решения - анализу. Анализ - основной этап при решении задач на построение: не найдя реше-ния, нельзя провести ни построения, ни доказательства, ни исследования. Но по трудности выполнения исследование является не менее сложным этапом. Наи-большее количество ошибок допускается именно при исследовании.

2.2.7. Методы решения задач на построение.

Метод геометрических мест.

1. Понятие «геометрическое место точек», являющее-ся синонимом понятия «множество», одного из основных понятий современной математики, вводится в элементар-ной геометрии исключительно ввиду его наглядности, образности; слово «место» как бы отвечает на вопрос, где «помещаются» точки, обладающие тем или иным свойством.

Знание геометрических мест точек, обладающих определенным свойством, облегчает нахождение реше-ния для многих практических задач. Например, для ре-шения задач на сопряжение окружностей и прямых, с ко-торыми учащиеся встречаются довольно часто на уро-ках труда в школьных мастерских при опиливании криволинейных поверхностей (изготовление дуги для лобзика, отвертки, гаечного ключа и т. п.), при изготов-лении приборов, пособий для школы, которые они часто делают не по чертежам, а по техническим рисункам, не выполняя деталировки каждой детали, необходимо знать соответствующие геометрические места. Без знания геометрических мест центров окружностей, касающихся данных прямых или окружностей при определенных ограничениях, семиклассники не смогут на уроках чер-чения понять способы решения задач на сопряжение углов дугами, сопряжение окружности с прямой при помощи дуги данного радиуса и т.п.

Следует учитывать, что понятие «геометрическое ме-сто точек» необходимо и в курсе алгебры при изучении графиков простейших функций в VII-VIII классах. График функции определяется как геометрическое место точек плоскости, координаты которых являются соответственными значениями аргумента и функции. Понятие графика необходимо и в курсе физики, где в последние годы все большее значение приобретает графический метод.

В VI-VII классах нельзя отказываться и от решения задач на построение методом геометрических мест, од-ним из основных методов конструктивной геометрии.

Решая задачи на построение, учащиеся учатся при-менять свои знания, ибо они должны сами отвечать на поставленные вопросы. В настоящее время главной задачей учителей математики является не столько сообще-ние математических фактов, определений, формул, тео-рем, сколько необходимость учить детей мыслить, учить их самостоятельно работать.

2. Учащиеся VI класса не сразу сознательно, глубоко усвоят понятие «геометрическое место точек». Важно, чтобы они с данными словами связывали более полную группу геометрических фигур, чтобы понятие охваты-вало целый класс, а не один - два отдельных примера. Учащиеся должны видеть различные примеры геометри-ческих мест точек в различных формулировках, чтобы на основе анализа и синтеза осознать общность этого понятия, охватывающего обширный класс геометриче-ских фигур, создать себе соответствующее представление об этом понятии.

Трудным для понимания шестиклассников является и абстрактное понятие «множество». Приводимые при-меры множеств (множество учащихся, деревьев в саду и т.п.), в большинстве своем, есть конечные множества, а почти все геометрические места точек, рассматривае-мые в школьном курсе геометрии, являются бесконечны-ми точечными множествами.

3. Понятие геометрического места точек, обладаю-щих некоторым свойством, вводим на примере геометрического места точек, равноудаленных от двух данных точек. После изучения признаков равенства прямоуголь-ных треугольников решаем задачу: «Найти точку, рав-ноудаленную от двух данных точек А и В» (рис. 27).

Рис. 27

Учащиеся обычно указывают лишь точку О, середину отрезка АВ. А нет ли на плоскости еще точек, равноуда-ленных от А и В? При построе-нии с помощью циркуля не- скольких таких точек учащиеся самостоятельно припоминают свойство точек оси симметрии и говорят, что точек, равноудаленных от А и В, будет много, все они лежат на оси симмет-рии данных точек А и В.

Можно непосредственно, основываясь на признаках ра-венства прямоугольных тре-угольников, доказать, что всякая точка, равноудаленная от данных точек А и В, лежит на их оси симметрии, то есть на перпендикуляре, проведенном к отрезку АВ через его середину, и наоборот, всякая точка этого перпендику-ляра равноудалена от точек А и В.

После этого даем определение геометрического места точек, обладающих некоторым свойством, как множест-ва всех точек, обладающих этим свойством, и только та-ких точек, и предлагаем учащимся сформулировать ре-зультат решения задачи и записать в тетради, что гео-метрическое место точек, равноудаленных от двух точек, есть ось симметрии данных точек.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать